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To my family.



A B S T R A C T

The aim of this dissertation is to model and study the effect of heterogeneous
opinion dynamics on graphs. This work will be mostly committed to analyzing
the effect of anti social behaviours in competition with dynamics that would nor-
mally push the system towards order and consensus. The analysis will be mainly
carried out under the mean field assumption and with voter and majority laws as
building blocks. The first models that we are going to deduct and analyze, will
be characterized by individuals who behave in different ways independently on
who they are interacting with; instead, other models that we will develop later
on will take into account this dependence. In the last part of this work, we will
investigate an interesting heterogeneous model involving a full majority dynamic,
which will bring to interesting considerations about ODE’s with discontinuous
right-hand side and the validity of the Kurt’s theorem. Finally, we will go beyond
the mean field by considering a model describing anti social behaviours on a star
graph.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N T O S T O C H A S T I C M O D E L I N G O F S O C I A L
D Y N A M I C S

1.1 a stochastic approach to social dynamics

The concept that many laws of nature share a statistical origin is so deeply estab-
lished in almost all fields of modern physics, that statistical physics has acquired
the status of a discipline on its own. Given their success and their very general
conceptual framework, in recent years there has been a trend toward applications
of stochastic methods to interdisciplinary fields as they played a pivotal role in
understanding dynamics in biology, medicine, information technology, computer
science etc.. Indeed, there are several examples of phenomena sharing a mathe-
matical description with probabilistic notions at its core, like epidemics diffusion,
images spreading on the web, the study of gene frequencies among a population
of reproducing individuals (description of genetic models can be found in [1]) or
the persistence of particular species in an ecosystem and many others (an exsten-
sive review of the state of the art of stochastic models for social dynamics can be
found in [2]) .

In particular, a growing interest raised towards applications of stochastic mod-
els to describe social phenomena, a field apparently very far from the orginal
domains of application of statistical methods. Simple ideas of statistical descrip-
tion of social phenomena are actually rather old, and they anticipated the use
of probabilistic and statistic methods to model physic phenomena. One of the
very first use of simple statistics method to extract useful information from the
collective properties of a large number of individuals was the analysis of birth
(and death) rate in certain population, which is an issue of concern and policy for
national governments that may seek to increase or reduce it in order to pursuit
a certain sustainability strategy. More refined statistical models have been devel-
oped later on to describe crime statistics. All these studies suggest that there exist
very general laws emerging from the collective behaviour of a number of interact-
ing people and led many scientists and philosophers to call for some quantitative
understanding (in the sense of physics) on how such precise regularities arise out
of the apparently erratic behavior of single individuals.

In social phenomena, the basic constituents are people rather than particles,
and single individuals interact with a certain number of peers, usually negligible
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1.1 a stochastic approach to social dynamics 3

compared to the whole population. Despite the presence of these “local interact-
ing dynamics”, human societies are characterized by stunning global regularities
arising in many different aspects. Some of the most interesting and relevant of
these regularities are self-organization behaviours, like transitions from disorder
to order. Examples of these spontaneous transitions are the formation of opinion
consensus about a specific issue starting from a very disorderd configuation of
disagreement, which may lead to the emergence of coalitions among people; the
spontaneous rise of a new culture or the creation of a new common language.
Even the spread of innovation as well as deseases among a population show very
regular patterns.

During the last century, the world has undergone dramatic changes that deeply
affected social dynamics. This is mainly due to the huge diffusion of new ways
to communicate and interact with each other. In particular, the creation of the
web and the subsequent birth of social networks have contributed to create the so
called connected world, which allows to have interactions not only between people
belonging to the same community but even between people spatially very far
from each other [3]. All this increased connectivity makes the study of social
phenomena much more significant and challenging than in the past, leading to
the construction of a systematic framework, based on stochastic models, to face
and analyze these kind of problems.

That said, approaching the studying of social dynamics leads immediately to
some conceptual difficulties. Similarly to what is usually done in the analysis
of physical phenomena, one may decide to study a certain dynamic at different
scales. The microscopic approach takes into account the dynamics of each ele-
mentary consituent that are coupled according to the corresponding interactions.
Conversely, a macroscopic point of view describes the system dynamic in terms
of local avarages of microscopic quantities (for instance, the description of a fluid
or a traffic flow in terms of particles density). Usually in physics, the microscopic
point of view is chosen to describe the dynamic of a single or few elements, while
the macroscopic scale is used when many constituents interact with each other.
In common applications, the elementary components of the systems investigated,
atoms and molecules, are relatively simple objects, whose behavior is very well
known: the macroscopic phenomena are not due to a complex behavior of single
entities, rather to nontrivial collective effects resulting from the interaction of a
large number of “simple” elements.

Humans are exactly the opposite of such simple entities: the detailed behavior
of each of them is already the complex outcome of many physiological and psy-
chological processes, still largely unknown. No one knows precisely the dynamics
of a single individual, nor the way he interacts with others. Moreover, even if
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one knew the very nature of such dynamics and such interactions, they would
be much more complicated than, say, the forces that atoms exert on each other. It
would be impossible to describe them precisely with simple laws and few param-
eters and a classic microscopic approach is unachievable. Therefore any modeling
of social dynamics inevitably involves a huge and unwarranted simplification of
the real problem. It is then clear that any investigation of models of social dynam-
ics involves two levels of difficulty. The first is in the very definition of sensible
and realistic microscopic models of interaction betweeb individuals; the second is
the usual problem of inferring the macroscopic phenomenology out of the micro-
scopic dynamics of such models.

As we will see with few examples in the next section, most part of the mod-
els used in social dynamics are built by defining very simple microscopic laws
of interactions between people. This may seem an oversemplification of the real
dynamics but in this respect, statistical physics brings an important added value.
Indeed, in most situations qualitative (and even some quantitative) properties of
large scale phenomena do not depend on the microscopic details of the process.
Only higher level features, as symmetries, dimensionality or conservation laws,
are relevant for the global behavior. With this concept of universality in mind
one can then approach the modelization of social systems, trying to include only
the simplest and most important properties of single individuals and looking for
qualitative features exhibited by models.

1.2 concept and tools of social dynamics : the role of the topol-
ogy

The fact that people interact with each other spontaneously is probabily one of the
most self-evident concept in nature, and its importance has been recognized by
phylosophyst since Aristotele, who said: “Man is by nature a social animal; an indi-
vidual who is unsocial naturally and not accidentally is either beneath our notice or more
than human”. Indeed, it seems clear that without interactions, heterogeneity will
dominate as each individual in a certain population would follow his personal in-
terests, including opinions, languages and so on so forth. It should be clear, thus,
that modeling how the interactions between people happen is the most important
aspect when building a social dynamics model. This modeling phase can be con-
ceptually divided into two sub-phases: the definition of the interacting topology
and the definition of the interacting laws. The importance of the latter one has
already been discussed in the first section of this chapter, hence we will focus our
attention on the first one.
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It is a common experience that people organize themselves in local communities.
This may happen for a number of reasons, for instance two communities might be
identified as two groups of people characterized by two different opinions, and
in local consenus among the single group (we can think of people who have an
Iphone and those who prefer an Android device). However, this is already an
high-level effect arising from local interactions, and explaining how these kind of
communities emerge is the final result of the model, as we have already explained.
Instead, there is another kind of structure that has to be considered as an input to
the model: the underlying interacting topology. This is nothing but the definition
of relationships among people in a population: who interacts with whom and how
frequently. These are the kind of communities that we need to build the model.
For instance, one may want to describe the spread of a certain opinion within the
population of a certain region; then, the first thing to do would be to define how
people are connected each other and we may expect that two close cities share
more bonds than cities far from each other. At an higher level of detail, one may
be interested in modeling relationships between families, or in general different
groups of people that may be linked by common friendships. In this sense, a great
example comes from social network structures, like Facebook or Twitter. From a
mathematical point of view, the natural way to model relationships of any kind
is by means of a graph, which is a representation of a network structure made by
nodes (people in a population) and links connecting them (relationships between
people).
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Figure 1: An example of graph representing three small communities indirectly connected
each other by the common node C. For instance, this model may represent
groups of friends indirectly connected by a “popular” individual, who knows at
least a person of each group.

Nowadays, as we have already pointed out, the stunning growth of internet and
social networks made the enitre world higly connected by creating huge networks
that overcome spatial distances between people. For this reason, the interest is
often devoted to the so called large scale networks, like the ones we may observe in
modern social networks mentioned before.

When observing real networks of this kind, some common features arise:
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• The shortest distance between two nodes is usually “small” compared to
the network dimension in terms of nodes. This property, known as small
world phenomenom, was empirically studied by the social psychologist Stanley
Milgram, who asked randomly chosen people to try forwarding a letter to a
designated “target” person. Roughly, a third of the letters eventually arrived
at the target, in a median of six steps (see [4]), which is a surprisingly small
number of steps if we think of how many people are present even in a small
town.

• Typically there is an over-abundance of hubs - nodes-people in the network
with a high number of connections. Notice that this feature is actually linked
to the first one as these hubs serve as the common connections mediating the
short path lengths between other edges. This property is often analyzed by
considering the fraction of nodes in the network that have a particular num-
ber of connections going into them (the degree distribution of the network).
The formalization of this concept is made by assuming that this degree dis-
tribution follows, at leat asimptotically, a power law pk ∼ k−γ , 2 ≤ γ ≤ 3 (pk
is the fraction of nodes with degree k).

• These networks are highly clustered. Intuitively, this means that people tend
to create tightly knit groups characterised by a relatively high density of ties.
In particular, the large number of clusters of order three (triangles) has been
often observed. This can be seen as a transitivity property shared by social
networks: if a person a knows a person b who in turn knows another person
c, then likely there is a tie also between a and c.

Tipically, networks that satisfy these properties are also called scale-free networks.
There exist several mathematical models to generate graphs with these features,
however an extensive discussion of these models is beyond the scope of this dis-
sertation.

1.2.1 When the graph is complete: the mean field case

Since our analysis of heterogeneous model will be mainly performed in the mean
field assumption, it can be useful to spend few words about the study of social
dynamics taking place on a complete graph, which is nothing but a graph where
every pair of nodes are connected each other. Indeed, in a complete graph all
nodes are the same, there are no such things as hubs or communities. Although
this may seem an unrealistic framework as we lose the structure characterization
of the network, working with a complete graph brings many advantages from
a mathematical point of view, which will be discussed in chapter 2. In general,
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we can say that results obtained under this assumption can provide important
indications on how the chosen dynamics work, and say if it is suitable to describe
a certain social behaviour. Furthermore, for several models mean field results are
coherent with those observed in more general structures like random graphs or
they can be used to bound some quantities of interest.

Figure 2: A complete graph with 16 nodes.

1.3 modeling opinion dynamics , voter and majority models

Agreement and disagreement between people are two concepts that we face conti-
nously. Everyday life presents many situations in which it is necessary for a group
to reach shared decisions. Agreement makes a position stronger, and amplifies its
impact on society. An immediate exemplification of this concept can be found in
politics, where agreement is crucial in order to make decisions. The main goal of
opinion dynamics is to describe how elementary agreement/disagreement rules
can influence and change the opinion state of a certain population, leading to the
formation of high-level phenomena like the formation of coalitions or consensus.

In any mathematical model, opinion has to be a variable, or a set of variables,
i.e., a collection of numbers. This may appear too reductive, thinking about the
complexity of a person and of each individual position. Everyday life, on the
contrary, indicates that people are sometimes confronted with a limited number
of positions on a specific issue, which often are as few as two: right/left, Win-
dows/Linux, buying/selling, etc. If opinions can be represented by numbers, the
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challenge is to find an adequate set of mathematical rules to describe the mecha-
nisms responsible for the evolution and changes of them.

In order to describe how this can be done, we briefly present two models that
have received more attention in the literature: the voter and the majority model,
that will be used together with their “antisocial” counterpart also in this disserta-
tion.

1.3.1 The voter model

The voter model brings this name for the very natural interpretation of its rules
in terms of opinion dynamics; for its extremely simple definition and intrinsically
linear dynamic, the model has been thoroughly investigated also in fields quite far
from social dynamics, like probability theory and population genetics. Moreover,
many generalizations have been proposed.

The microscopic dynamic of interaction is extremely simple: each individual in
the population is endowed with a binary variable x ∈ {0, 1}, which represents its
opinion state. At each time step, an individual v is selected along with one of its
neighbours w and, with a certain probability q, it copies its opinion: xv = xw. This
update rule implies that people imitate their neighbors. The following pictures
show an update step.
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(a) The red node is selected for an up-
date.
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(b) It looks at a randomly chosen neigh-
bour.
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(c) It copies its opinion, in this case 1.

We can already understand that when all sites take the same value, the whole
system stops changing forever. Therefore, the voter model has two trivial equi-
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librium distributions concentrated on the states where all nodes are in state 0 or
1.

Despite being a rather crude description of any real process, the voter model has
soon become popular because it is one of the very few non-equilibrium stochastic
processes that can be solved exactly in any dimension.

1.3.2 The majority model

The majority model was proposed to describe public debates and hierarchical vot-
ing in a society. Similarly to the voter model, we can assume that each individual
is endowed with a binary variable x ∈ {0, 1}. The basic principle, as one could
guess by the name of the model, is based on a majority rule. In particular, at each
instant of time a certain individual is selected and then it looks it copies the local
majority of opinion among its neighbours. The majority rule can be stated also
imposing that each individual copies the majority opinion of a group of k people
randomly chosen among its neighbours; this rule is also known as k-majority. In
case of a tie among opinions, one can weather introduce a bias in favor of one of
the opinions, say 1, and that opinion prevails in the group, or simply choose one
of the two opinions at random.
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(a) The red node is selected for an up-
date.
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(b) It looks at its neighbours opinions
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(c) It selects the local majority, in this
case 0.

While the Majority model ignores psycho-sociological aspects of real opinion
formation, this simple decision-making process leads to rich collective behavior.
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Indeed, this model can be considered a sort of generalization of the plain voter
model, and the main difference is that the majority rule considers interactions
between multiple individuals, rather than the “1 vs 1” interaction of the voter
model (notice that when k = 1, the majority model boils down to the voter). This
many-body nature of the majority rule makes the model intrinsically non linear
and much more complicated to be analized in general networks.

1.4 heterogeneous social dynamics : capturing the diversity

In the first section, we have already pointed out that describing social dynamics
by means of sample microscopic laws of interaction can lead to an oversemplifica-
tion of the model. Indeed, even though interesting high-level patterns arise even
from simple models, one should try to include in the model at least the main
features that can be observed when analizing social behaviours. One of the most
self-evident characteristics of human beings is their enormous behavioural diver-
sity, both within and between populations. People vary in their social, mating and
parental behaviour and have diverse and elaborate beliefs, traditions, norms and
institutions. These concepts are well explained in [5]. Despite this diversity, most
of the social dynamic models in leterature consider all individuals interacting in
the same way each other. In other words, once the interaction laws are defined, it
is assumed that the whole population follows those laws in the same way. Hence,
we can say that all individuals are the same from the point of view of the inter-
action dynamics, and differences between individuals are only taken into account
from a “topological” point of view when defining the network representing a cer-
tain population (for instance, the difference between hubs and avarage nodes in
a scale-free network). It should appear already clear that working with such ho-
mogeneous models, like the plain voter and majority model, greatly simplifies the
analytical analysis. Neverthless, the assumption of homogeneity seems too restric-
tive in many cases of interest as it neglects a number of crucial aspects of social
behaviours. We always see the effect of this heterogeneity among people in our
dailylife: people react differently to the same political issue, they can be more or
less open-minded towards new opinions, they even may have different behaviours
with respect to different kind of people and so on so forth. In particular, an inter-
esting phenomenon that heterogeneous models allow to investigate, is the anti-social
behaviour exhibited by some individuals as they try to alterate the usual sponta-
neous rute to consensus and bring the system to an highly disordered state, where
opinions are fragmentated among the population. Finally, heterogeneous models
can be also used to analyze the robustness of the corresponding homogeneous
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models with respect to perturbations that occur when even a small dynamically
heterogeneous group of people arises among the population.

In order to build an heterogeneous model, in principle one should consider
different interacting laws for each individual in the population, which of course
cannot be done otherwise the model would became uselessy complicated. More-
over, as already mentioned in the introduction paragraph, modeling specific in-
teracting laws for each individual would be an impossible task. The best thing
to do in order to overcome these difficulties but without boiling down to an ho-
mogeneous model, is to group common diversities by considering heterogeneous
sub-populations characterized by different interaction dynamics. This heterogene-
ity can arise in different ways; for instance, individuals of, say, sub-populations
1 and 2 may interact differently from each other with respect to the whole pop-
ulation or rather they might behave in different ways depending on whom they
interact with.

In this dissertation we will focus our attention on anti-social behaviours with
voter and majority models used as building blocks to construct heterogeneous
dynamics. Since the analytical analysis of an heterogeneous model on general net-
works can easly become unachievable, we will consider mainly dynamics taking
place on a complete graph and the model will be studied under mean-field as-
sumptions. However, in the last part of this work we will drop this hypothesis
and we will consider an anti-social behaviour model over a star-graph structure.

To being with, in the next chapter we will present some mathematical concepts
and tools necessary in order to model and study social dynamics in presence of
heterogeneities.



2
M AT H E M AT I C A L C O N C E P T S A N D T O O L S F O R S T O C H A S T I C
O P I N I O N D Y N A M I C S

In this chapter we are going to introduce theoretical concepts and tools that will
be used throughout this dissertation. The chapter is conceptually divide into two
parts: in the first one, we will define all the tools necessary in order to derive and
assemble a stochastic opinion dynamics model; in the second part of the chapter,
we will present some useful results from dnamic system theory, useful to analyze
the models.

More in details, we will introduce a particular class of stochastic process useful
to model opinion dynamics on networks, called Markov chains, and their main
properties (a more complete analysis of this argument can be found in [7] and
[8]). Afterwards, we will present the concept of interacting kernel that will be

used to describe how individuals interact each other. The difference between ho-
mogenoeus and heterogeneous interacting kernels will be highlighted. Then, we
formalize the important and strictly related concepts of mean-field approximation
and hydrodynamic-limit, that will allow us to study our models in large networks
(mainly in complete graphs). After that, the two important examples of the voter
and majority models already presented in the first chapter will be studied by us-
ing the introduced tools.

Finally, In the second part we will present some useful results regarding bidi-
mensional differential systems. In particular, we will see theroems about limit sets
of planar systems and brief introduction to theory of differential equation with
discontinuous right-hand side, which will be useful in the last part of this disser-
tation.

2.1 discrete time markov chains

Markov chains are a special class of stochastic process that, thanks to their “nice”
properties, are used as stochastic model of many real-world processes, like opin-
ion and social dynamics.

Definition A Markov chain is defined as a set of random variables {X1,X2,X3, . . . }
defined on a countable set S, called state space, such that the following Markov
property holds:

P(Xn+1 = x |X1 = x1,X2 = x2, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn) (1)

12
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where the two conditional probabilities are assumed well defined.

We can notice that the Markov property that characterizes Markov chains ex-
presses a sort of memoryless property: the probability distribution of the next
state of the process depends only on the current state and not on the sequence
of events that preceded it. These kind of processes can thus be used to model
systems whose future does not depend on the past but only on the present state
of the system itself.

A Markov chain is said to be time-homogeneous if P(Xn+1 = x |Xn = y) =
P(Xn = x |Xn−1 = y) = Pyx. Intuitively, this means that the transition probability
from one state to another does not change in time. In this dissertation we will
consider only time-homogeneous Markov chains.

Markov chains are fully described when the transition probabilities are given for
any pair of possible states belonging to the state space and together with an inital
discrete probability distribution defined on it, which is the initial condition of
the chain. Tipically, the transition probabilities are collected in a stochastic matrix
P ∈ RS×S , called transition matrix, while the initial distribution is represented as
a probability vector usually denoted by π(0) ∈ P(S), where P(S) is the set of
all vectors in [0, 1]S whose entries add up to 1. Notice that π(0) represents the
probability distribution of the variable X0 and if the chain starts deterministically
from a certain state x, then π(0) = δ(x). The probability distribution π(1) of the
state after one time step can be found by means of the transition matrix: π(1) =
P · π(0). If we iterate this relation, we easly see that the probability distribution of
the state of the system after n steps, which is the random variable Xn, is given by:

π(n) = Pn · π(0)

Let us see some other properties that a Markov chain might feature.
Let i, j be two states belonging to S, then i is said to be reachable from j when

a system started in state j has a non-zero probability of transitioning into state
i at some point, that is, there exists k ∈ N such that P(Xn+k = i |Xn) > 0. A
Markov chain is called irreducible if each state is reachable from every other state.
This property is particularly nice as it is possible to prove that an finite irreducible
Markov chain admits a unique probability distribution π ∈ P(S) such that if a
system starts with initial condition π-distributed, then also the distributions of
the next states will have the same distribution π. More formally, π is such that if
Xn is π-distributed, then Xn+1 is π-distributed as well. This ditribution is called
the invariant probability or invariant distribution of the chain. Recalling that we
can always write π(n+ 1) = P · π(n), it immediately follows that the invariant
probability must satisfy the equation

π = P · π (2)
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which shows that π is nothing but a left eigenvector associated to the eigen-
value 1 of the transition matrix P . In particular, when the chain is irreducible,
the Perron-Frobenius theorem guarantees the existence, the uniqueness and the
non-negativity of such eigenvector.

A Markov chain is said to be aperiodic if there exists a n ∈ N such that ∀ n > n

we have:
P(Xn = i |X0 = i) > 0 ∀ i ∈ S (3)

The concept of aperiodicity means that returns to state i can occur at irregular
times.

A Markov chain over a finite state space S is said to be ergodic if it is both
irreducible and aperiodic.

The following important result holds for ergodic Markov chains:

Proposition 2.1.1 Let Xn be an ergodic Markov chain over a finite state space S and π
its unique invariant probability. Then for all initial distributions π(0) the following holds:

lim
n→∞

π(n) = π (4)

Another important concept regarding Markov chains is the reversibility. A Markov
chain is said to be reversible if there is a probability distribution over states π̃, such
that the following holds:

π̃iP(Xn+1 = j |Xn = i) = π̃jP(Xn+1 = i |Xn = j) ∀ i, j ∈ S (5)

This condition is usually know as detailed balance. A result proven in [bibl] shows
that π̃ is an invariant probability for the chain.

Another feature of Markov chains is based on the so called absorbing states. A
state i is said to be absorbing if it is impossible to leave such a state, that is, Pii = 1.
A Markov chain is called absorbing Markov chain if there for any state j there is at
least a reachable absorbing state i. If we denote with A the set of the absorbing
states of an absorbing Markov chain, then the following holds:

lim
n→∞

P(Xn ∈ A |X0 = i) = 1 ∀ i ∈ S (6)

This means that, in an aborbing Markov chain, soon or later one will jump into
one of the absorbing states and it will remain stuck there forever, regardless of
the initial condition. Notice, however, that such chains are not ergodic and the
above statement does not specify which one of the absorbing states the system
will converge to as this depends in general on the initial condition.

Because of their definition in terms of transition probabilities from a state to
another, Markov chains can be visually represented by a directed graph. We have
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already seen what is a graph in the first chapter, ate least intuitively. In more
formal words, a graph G is a mathematical object defined by a set of nodes (or
vertices) V and a set of links (or edges) E ⊆ V × V connecting them, and it is
usually denoted with G(V,E). A graph may be directed or undirected. We say that
a graph is directed if ∀ (i, j) ∈ E⇒ (j, i) ∈ E.

db
ca

(a) Directed graph.

db
ca

(b) Undirected graph.

Given a time-homogeneous Markov chain, it is possible to define its underlying
graph by means of its transition matrix. In particular, one can define a directed
graph G(V,E) such that V = S and (i, j) ∈ E ⇐⇒ Pij > 0. The interpretation of
this construction is quite obvious: the outgoing arrows at a certain state (a node
of the graph) are nothing but the possible directions for a jump at the next time
step. Notice that if the Markov chain is not time-homogeneous, one should define
a sequence of graphs, one for each time step as the transition probabilities may
vary in time. More in general, it is possible to construct an underlying graph even
for non markovian processes by using the same logic.

Usually, the transition probability values are reported near the edges. Let us see
a simple example of a simple Markov chain.

Example: weather evolution Here we will consider a Markov chain describing a
very simple model of weather evolution. Let us assume that a study of the weather
in the city of Ottawa in early spring yields the following observations:

• It is almost impossible to have two nice days in a row

• If we have a nice day, we just as likely to have snow or rain the next day

• If we have snow or rain, then we have an even chance to have the same the
next day

• If there is a change from snow or rain, only half of the time is this a change
to a nice day.

Notice that this toy model assumes that the probability of having a certain weather
condition tomorrow depends only on the weather of today.
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We can thus model the weather dynamics by means of a Markov chain with
state space S = {nice day, rain, snow} = {n, r, s}. Indeed, by using the above
informations, we can easly write the transition matrix of the chain

P =

 0 0.25 0.25

0.5 0.5 0.25

0.5 0.25 0.5

 (7)

and the corresponding underlying graph representing the chain is the following:

s

n r
0.25

0.25

0.5

0.5

0.25

0.5

0.25 0.25

Figure 3: The underlying graph representing the weather evolution model.

Notice that the Markov chain considered in this example is ergodic, and thus
it admits a unique invariant probability that coincides with the asymptotic prob-
ability to find a certain weather condition in Ottawa. Applying equation (2) one
may find that π = [0.2, 0.4, 0.4]T , which means that, in the long term, there is 20%
chance of getting a nice day, 40% chance of having a rainy day and 40% chance of
having a snowy day.

2.2 interaction kernels

In this section we will introduce some mathematical objects that allow us to model
interactions between individuals in opinion dynamics models, called interaction
kernels.

Let G(V,E) be a strongly connected undirected graph with finite sets of nodes V
and edges E ⊆ V×V. Let |V| = N be the population. In the following nodes will be
often called individuals, whenever more appropriate for the applicative scenario
we have in mind; edges represent communication capabilities and relationships
between them.

Given a certain node v in the graph, its neighbourhood Nv is defined as the set of
nodes the node itself is connected to:

Nv := {w ∈ V | (v,w) ∈ E} (8)
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Notice that the degree of v is: dv = |Nv|. Let X be a finite set representing all the
possible states, in this case opinions, that a certain individual can have. In partic-
ular, we shall denote with xv(t) ∈ X the opinion (or state) assumed by individual
v at time t. All these states can be collected in a large vector x(t) ∈ XV, which is
called detailed configuration of the system at time t.

A generic stochastic dynamics over this network is defined as follows: at each
time instant t, nodes, independently from each other, activate and their state pos-
sibly changes, in a probabilistic way, depending on the states of their neighbours-
In order to model how this actually happens, we introduce a family of functions
Θv called interaction kernels:

Θv : X×X×XNv → [0, 1] (9)

where Θv(xv,x′v | x) is the probability that node v changes its state from xv to
x′v conditioned to the fact that the detailed configuration of its neighbours is x.
Notice that obviousy the following holds:∑

x′∈X
Θv(xv,x

′
v | x) = 1 ∀ v ∈ V, ∀ x ∈ XNv , x ∈ X (10)

Interaction kernels induce naturally a Markov chain over the space of configura-
tion XV. Indeed, since at each instant of time only one node can activate and thus
change opinion, transitions can only be possible between detailed configurations
that differ by not more than one element (the updated node at that instant of time).
Hence, given two detailed configurations x and x′, the transition probabilities that
characterize the Markov chain can be written as follows:

Px,x′ =


0 if Hd(x,x

′) > 1

ρvΘv(xv,x′v | x) if Hd(x,x
′) = 1

1−
∑
x 6=x′

Px,x′ otherwise
(11)

Here Hd denotes the Hamming distance1 and ρv is the probability that node v is
activated at time t.

A special kind of interaction kernels are the so called gossip interaction kernel. A
kernel is said to be of gossip type if there exists a stochastic matrix L ∈ RV×V and
a family of functions (called gossip interacting functions)

θvw : X×X×X→ [0, 1] (12)

1 The Hamming distance between two vectors is defined as the distance induced by the Hamming
norm, which is the number of non-zero elements in a vector. Hence, the Hamming distance be-
tween two vectors can be seen as the number of elements in which the two vectors differ.
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such that
∑

x′∈X θvw(x,x
′ | y) = 1 for every x, y ∈ X, and

Θv(xv,x
′
v | x) =

∑
w∈Nv

Lvwθvw(xv,x
′
v | xw) (13)

In words, in the dynamics defined through a gossip interaction kernels, after the
selection of the node v according to the probability vector ρ, a second node w is
selected according to the probabilities given by the stochastic matrix L. Then, the
probability of an opinion shift of the node v from xv to x′v, conditioned on the state
of the second node xw, is given by θvw(x,x′ | xw). In the case when the functions
θvw(x,x′ | xw) do not explicitly depend on the present opinion of v, the interaction
kernels are said to be a forgetful gossip.

Furthermore, if the following conditions hold:

• ρ = 1
|V| , which means that nodes are selected uniformy at random.

• L defines a simple random walk on G, which means that the neighbours w
are also selected at random.

• θvw does not explicitely depend on v and w.

then we talk about homogeneous gossip interactive dynamics and the subscript in
θvw can be dropped. Notice that in this case, the elements of the transition matrix
P for which Hd(x,x

′) = 1 are given by:

Px,x′ =
∑
w∈Nv

1

|V|
1

dv
θ(xv,x

′
v | xw) (14)

In principle, one may define different interacting kernels depending not only
on the activated node v, but also on different groups of nodes involved in the in-
teraction, as an individual may behave differently with different people. In order
to address for these more general situations, one may consider the global popu-
lation of nodes V splitted into a finite number of subpopulations with different
interactive attitudes and thus different dynamic behaviors.

More in details, we partition the population as follows:

V = V1 ∪V2 ∪ · · · ∪Vs Vi ∩Vj = ∅ ∀ i 6= j (15)

We have that |Vi| = Ni is the population size of the i-th subpopulation (obvi-
ously N = N1 +N2 + · · ·+Ns). Then, fixed a state space X, we define the set of
heterogeneous interaction kernels as the family of functions

Θv : X×X×
s∏

j=1

XVj → [0, 1] (16)



2.3 mean field approximation 19

Thus, the probability that a node v changes its opinion from xv to x′v conditioned
to the detailed configurations of each subpopulation is given by:

P(xv → x′v | x1,x2, . . . ,xs) = Θv(xv,x
′
v | x1,x2, . . . ,xs) (17)

Notice the explitic dependence on the different kind of groups present in the
population.

2.3 mean field approximation

The markov chain induced by the interaction kernels is defined over the generally
huge space of detailed configurations XV, which grows exponentially in the num-
ber of nodes. Moreover, the transition probabilities of the chain depend on the
graph tolpology as the interactive kernels structure is coupled with it. To analyze
a model in this general framework can be exceedingly difficult. For this reasons,
it would be nice to work with a sort of equivalent Markov chain over a smaller
state space. This is possible by means of the so called mean field approximation. This
approach usually assumes that the underlying network is the complete graph.

From the mathematical point of view, the key point is that the mean field as-
sumption allows to take a Eulerian point of view and instead of keeping track of
the state of each single agent we can rather consider the fraction of agents sharing
a certain state. This remarkable semplification has two main effect: it makes possi-
ble to reduce the dimension of the state space drastically and allows us to consider
a kind of hydrodynamic limit when the population is large, that is, N →∞.

Let us fix some notations. We recall that P(X) is the set of probability vector
over X, that is

P(X) =

{
p ∈ RX | px ≥ 0,

∑
x

px = 1

}
(18)

Furthermore, we define

PN (X) = {p ∈ P(X) |Np ∈NX} (19)

Given a detailed configuration of the system x ∈ XV, it is possible to define its
type as the probability vector px ∈ P(X), whose components are defined by:

pxi =
#{v ∈ V | xv = i}

|V|
∀ i ∈ X (20)

We see that the generic component pX is the fraction between the number of
individuals with opinion equal to i in the configuration x and the total population
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size. Notice that pxi ∈ PN (X) and the space PN (X) is tipically called the space of
types.

In the following, we will introduce the mean field approach firstly for homoge-
neous interaction kernels; afterwards, we will extend the same concept to hetero-
geneous kernels of the form (16).

To begin with, we fix an interaction kernel Θ : X×X×XV → [0, 1], which is
the same for every node. Notice that we are assuming that Nv = N , which is true
for complete graphs. Also, this means that each individual is a neighbour of itself:
this does not entail any loss of generality and it has the advantage that the kernel
has the same domain for all individuals.

Definition The interaction kernel Θ is said to be an anonymous interaction kernel if
Θ(x,x′ | x) is invariant by all possible permutations of the vector x.

Equivalently, we can say that Θ is anonymous if there exists a function
Π : X×X×PN (X)→ [0, 1] such that the following holds:

Θ(x,x′ | x) = Π(x,x′ | px) ∀ x ∈ XV, x,x′ ∈ X (21)

In words, the above definition states that an anonymous interaction kernel is well
defined when the type of the system is known. In particular, the detailed config-
uration does not matter and it is sufficient to know how many different opinions
(or states) are present among the population; how these opinions are located in
the network topology does not matter. Notice that is always true when we work
with complete graphs.

As we have already anticipated, working in complete graphs and thus with
anonymous kernels, greatly simplifies the analysis of the model. Indeed, if X(t) =
x(t) is the Markov process governing the evolution of the detailed configuration
by means of the interaction kernel Θ, one can use the equality (21) to define the
corresponding process of types

R(t) := pX(t) (22)

Notice that the so defined R(t) is the projection of the process X(t) onto the space
of types PN (X). A remarkable fact is that R(t) is also a jump Markov process
on PN (X) whose transition probabilities can be described as follows. When a
jump occurs in the original Markov process X(t), it means that an individual has
changed its opinion from some x ∈ X to some x′ ∈ X. This corresponds to a
change in exactly two components of the type process R(t) jumping from some p
to p′ = p+ 1

N (δx
′ − δx) 2. Infact, when x→ x′, we have that the fraction of opinion

x decreases by 1
N while the fraction of x′ increases by the same quantity.

2 δx is the the vector made by all zeros and a 1 in position x, namely: δxi = 0 ∀i 6= x and δxi = 1 for
i = x.
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The transition probabilities associated to the process R(t) will be deonted with
Qp,p′ and it clearly holds that:

Qp,p′ =


pxΠ(x,x′ | p) if Hd(p, p

′) = 2

1−
∑
p 6=p′

pxΠ(x,x′ | p) if Hd(p, p
′) = 0

0 otherwise

(23)

It is important to highlight the fact that, while we can always consider the process
R(t) even when the underlying graph is not complete, such a process will not be
Markovian in general. How opinions are distributed in the population is not a
sufficient statistics to determine the evolution of the system as an agent will be
influenced only by a subset of agent where, in general, opinions distribution will
be different from the global one.

That said, we can observe that the Markov process X(t) is defined over the
space of detailed configurations, which has a cardinality that grows exponentially
with the number of nodes |V| = N ; conversely, the new process R(t) is defined
over the space of types whose cardinality grows only polynomially 3 with N . This
yields to a great semplification in the model analysis.

The definition of anonymous kernel can be extended to heterogeneous kernels
of the form (16), as well as the concept of projected process onto the space of
types.

Definition Assume that the set of nodes V is decomposed into subpopulations
according to (15). Then the heterogeneous interaction kernel Θv is said to be a
semi-anonymous interaction kernel if there exist functions

Πk : X×X×
s∏

j=1

PNj
(X)→ [0, 1] (24)

for k = 1, . . . , s, such that, if v ∈ Vk, it holds:

Θv(x,x
′ | x1,x2, . . . ,xs) = Πk(x,x

′ | px1 , px2 , . . . , pxs) ∀ x ∈ XV, x,x′ ∈ X (25)

Like we did before, let X(t) = (x1(t),x2(t), . . . ,xs(t)) be the Markov process
governing the evolution in time of the detailed configurations by means of the
interaction kernels Θv. Then, one can define the corresponding process of types
R(t) = (R1(t),R2(t), . . . ,Rs(t)) with generic element Rk(t) = pXk(t), that is the
type process relative to the individuals belonging to subpopulation Vk.

3 In particular, one may prove that: |PN (X)| ≤ (N − |X| − 1)(|X|−1)
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We have that R(t) is still a jump Markov process on the space
∏s
j=1 PNj

(X)
characterized by transition probabilities that can be defined as follows. Let us
fix the notation R(t) = p = (p1, p2, . . . , ps). When a jump occurs in the original
Markov process X(t), it means that an individual of a certain subpopulation v ∈
Vk has changed its opinion from some x ∈ X to some x′ ∈ X. This corresponds
to a change in exactly two components of the type process Rk(t) = pk. Thus, the
types process R(t) jumps from some p to p′ = p+ 1

Nk
(δk,x

′ − δk,x) 4

The associated transition probabilities are thus given by:

Qp,p′ =
Nk
N
pkxΠk(x,x

′ | p) (26)

In words, the probability of jumping from p to p′ as effect of an opinion shift of
a node v ∈ Vk from x to x′, is found by multipling the probability of selecting a
node belonging to v ∈ Vk by the probability of picking up a node with opinion x

by the probability of this transition given by the interaction kernel.

2.4 the hydrodynamic limit

The mean field approximation allows us to study the model for large networks,
that is, N → ∞. An important result, known as Kurts’s theorem, will be provided
and will show that, in this regime, the model can be descripted by means of deter-
ministic differential equations. We will start discussing results for homogeneous
kernels; afterwards, the theory will be extended in order to take into account het-
erogeneous kernels.

2.4.1 Hydrodynamic limit for homogeneous models

Since all the transition probabilities depend on the number of individuals N , we
will emphasize this dependence by adding a superscript (N) when necessary.
In particular, the interaction kernels and the type process will be denoted with
Π(x,x′ | p)(N) and R(N)(t) respectively.

4 δk,x ∈
∏s

j=1 PNj
(X) takes value 1 in position x of the k-th subvector.
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We start noticing the following

E[R(N)(t+ 1) |R(N)(t)] = R(N)(t) +
1

N

∑
x′∈X

P(R(N)(t+ 1) = p+
1

N
(δx

′
− δx)|p)δx

′

− 1

N

∑
x′∈X

P(R(N)(t+ 1) = p+
1

N
(δx − δx

′
)|p)δx

= R(N)(t) +
1

N

∑
x,x′∈X

Q
(N)
p(t),p′

(δx
′
− δx)

(27)

Now we define the so called drift operator F : P(N)
N (X)→ RX

F(N)(R(N)(t)) :=
∑
x,x′∈X

Q
(N)
p(t),p′

(δx
′
− δx) (28)

Thus, equation (27) can be re-written as in terms of F(N):

E[R(N)(t+ 1) |R(N)(t)] = R(N)(t) +
1

N
F(N)(R(N)(t)) (29)

but this implies that

R(N)(t+ 1) = R(N)(t) +
1

N
F(N)(R(N)(t)) +

1

N
w(t) (30)

where w(t) is a random process taking value on RX and such that its expectation
conditioned on R(N)(t) is the 0-vector, that is, E[w(t) |R(N)(t)] = 0.

Now, let us change the time scale by considering t = bτNc and we consider
the processes R̃(N)(τ ) = R(N)(bτNc) = R(N)(t) and w̃(τ ) = w(bτNc) = w(t).
Intuitively, this rescaling should make sense as for each discrete time step the
type process makes movements of magnitudo 1

N . Thus, in order to appreciate the
dynamics we need a time scaling with N at least.

Therefore, equation (30) becomes

R̃(N)(τ +
1

N
) = R̃(N)(τ ) +

1

N
F(N)(R̃(N)(τ )) +

1

N
w̃(τ ) (31)

which is equivalent to

R̃(N)(τ + 1
N )− R̃(N)(τ )
1
N

=
1

N
F(N)(R̃(N)(τ )) +

1

N
w̃(τ ) (32)

If now we let N → ∞, we may observe that the left-hand side of equation (32)
converges to the derivative of R̃(N)(τ ) and the equation seems to become a differ-
ential equation. This intuition can indeed be made precise adding some extra but
mild conditions. It is the content of the following important result, whose proof
can be found in [6].
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Theorem 2.4.1 (Kurtz’s theorem (homogeneous models)) Suppose that:

• For N →∞ we have Π(N)(x,x′, p)→ Π(x,x′, p) uniformly in p, namely:

lim
N→∞

sup
p∈PN (X)

∥∥∥Π(N)(x,x′, p)−Π(x,x′, p)
∥∥∥ = 0 (33)

• For N →∞ we have that R(N)(0) converges to a probability vector η0 ∈ P(X).

• For N →∞ we have that the drift operator F(N) converges uniformly to an operator
F : P(X)→ RX which is Lipschitz continuous.

Namely, ∀ ε > 0, ∃N0 ∈N such that:∥∥∥F(N)(p)−F(p)
∥∥∥ < ε ∀ p ∈ PN (X), ∀N ≥ N0 (34)

where F is Lipschitz continuous.

Let η(t) be the unique solution of the following Cauchy problem:
dη

dt
= F(η)

η(0) = η0

(35)

Then, for any fixed T > 0, there exists a constant CT > 0 such that, for every ε > 0, we
have:

P

(
sup

0≤t≤T
|R(N)(t)− η(t)| > ε

)
≤ 2|X|2 exp(−CTNε2) (36)

In particular, almost surely

lim
N→∞

sup
0≤t≤T

|R(N)(t)− η(t)| = 0 (37)

This fundamental theorem states that, when N is sufficiently large, the dynamics
of the model can be described by means of the deterministic system of differential
equations (35). Notice that since 1 ∗ F(η) = 0 5, we have that 1 ∗ η(t) is invariant
on the trajectories of the ODE (35). Considering that the initial condition is a
probability vector, we have that η(t) ∈ P(X) for all t. In particular, this implies
that we can reduce the dimension of the ODE to |X− 1|.

An important special case is when we are dealing with a binary state space
X = {0, 1}. In this case, equation (35) boils down to a scalar ODE. Indeed, we just

5 1 is the vector of all ones.
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need the fraction of 1’s in the population as variable to keep track of the process.
We call this fraction zN (t). Notice that the underlying markov chain becomes a
birth and death process with transition probabilities q+N (z) and q−N (z), that are
respectively the probabilities to increase or reduce the fraction of ones by 1

N when
this fraction is zN (t). Assuming that when N → ∞ they uniformly converge to
two Lipschitz-continuous functions q+(z) and q−(z), Kurtz’s theorem applies and
the corresponding 1-dimensional ODE is given by

dz

dt
= q+(z)− q−(z) (38)

Notice that equation (38) is a sort of probability balance equation, whose right-
hand side is the difference between the mean fraction of individuals changing
their opinion from 0 to 1 and the mean of those making the change in the opposite
direction.

0 1 ............ k N............

q−(k)

q+(k)
1− (q−(k) + q+(k))

Figure 4: A birth and death chain with state space S = {0, 1, . . . ,N}

2.4.2 Hydrodynamic limit for heterogeneous models

Hydrodynamic limit can be studied also in presence of subpopulations following
different dynamics. Considering the partition (15), the hydrodynamic limit takes
the form N = N1 +N2 + · · ·+Ns →∞, under the assumption that:

Nk
N
→ ρk ∈ [0, 1] for k = 1, . . . , s (39)

One can then apply the same argument we have followed from equation (27). In
particular, we can define the drift operator: F(N1,...,Ns) :

∏s
j=1 PNj

(X)→ R(X)s as:

F(N1,...,Ns)(R(N1,...,Ns)(t)) :=
s∑

k=1

∑
x,x′∈X

Q
(N1,...,Ns)
k,p(t),p′

(δk,x
′
− δk,x) (40)

Hence, we can present the following extended version of the kurt’s theorem.
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Theorem 2.4.2 (Kurtz’s theorem (heterogeneous models)) Suppose that:

• For N →∞ we have Π(N1,...,Ns)
k (x,x′,p)→ Πk(x,x

′,p) uniformly in p

• For N →∞ we have that R(N1,...,Ns)(0)) converges to a probability vector

η0 ∈ P(X)s.

• For N → ∞ we have that the drift operator F(N1,...,Ns) converges uniformly to an
operator F : P(X)s → (RX)s which is Lipschitz continuous.

Let η(t) be the unique solution of the following Cauchy problem:
dη

dt
= F(η)

η(0) = η0

(41)

Then, for any fixed T > 0, there exists a constant CT > 0 such that, for every ε > 0, we
have:

P

(
sup

0≤t≤T
|R(N1,...,Ns)(t)− η(t)| > ε

)
≤ 2|X|2 exp(−CTNε2) (42)

In particular, almost surely

lim
N→∞

sup
0≤t≤T

|R(N1,...,Ns)(t)− η(t)| = 0 (43)

Notice that since 1k ∗ F(η) = 0 6, we have that 1k ∗ η(t) is invariant on the tra-
jectories of the ODE (41). Considering that the initial condition is in P(X)s, we
have that η(t) ∈ P(X)s for all t. In particular, this implies that we can reduce the
dimension of the ODE to s|X− 1|.

2.4.3 An important case: binary state space

In the special case when X = {0, 1} is binary, we obtain a s-dimensional system
of ODE. Indeed, in this case, considering the fraction zk of 1’s in the subpopula-
tion Vk, we obtain a s-dimensional birth and death process where the admissible
transitions are in the increase or decrease of one of the zk of the quantity 1

Nk
with

corresponding probabilities denoted by q
+(N1,...,Ns)
k (z) and q

−(N1,...,Ns)
k (z) (where

z = (z1, . . . , zs)). Assuming that when N → ∞ they uniformly converge to two
Lipschitz-continuous functions q+k (z) and q−k (z), Kurtz’s theorem applies and the

6 1k is the vector consisting of all 0 subvectors, but the k-th subvector which consists of all 1’s.
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generic k-th equation of the corresponding s-dimensional system of ODE is given
by

dzk
dt

= q+k (z)− q
−
k (z) (44)

In this dissertation we will consider heterogeneous opinion models considering
two subpopulations, that is, s = 2 and V = V1 ∪ V2. This further semplification
reduces the Markov process to a bidimensional birth and death process and the
system of ODE to a bidimensional differential system. In the following and in the
rest of this work we will call x the fraction of ones in the first subpopulation V1

and y the fraction of ones in V2. Namely:

x =
n1
N1

y =
n2
N2

(45)

where n1 and n2 are the number of ones of population 1 and 2 respectively. Notice
that we have x, y ∈ [0, 1]2. Furthermore, if we define ρ1 = N1/N and ρ2 = N2/N
as the fractions of the two populations, then the total fraction of ones is obviously
given by n

N = ρ1x+ ρ2y.
Hence, the planar differential system describing the hydrodynamic limit dy-

namics takes the form 
dx

dt
= q+1 (x, y)− q

−
1 (x, y)

dy

dt
= q+2 (x, y)− q

−
2 (x, y)

(46)

Working with bidimensional systems like (45) allows us to use the powerful tools
from the theory of planar autonomous dynamical systems. In the next section of
the chapter we are going to see some of those.

2.5 bidimensional differential systems : some useful results

In this section we are going to show some results from dynamical system theory
that will be used to study our models. A systematic analysis of this topic can be
found in [15].

The first result is the fundamental Poincare-Bendixon theorem, which completely
characterizes the limit sets of a planar continuous dynamical system.
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Theorem 2.5.1 (Poincare’-Bendixson) Given a differentiable real dynamical system de-
fined on an open subset of the plane, then every non-empty compact limit set of an orbit,
which contains only finitely many fixed points, is either

• a fixed point;

• a limit cycle;

• a connected set composed of a finite number of fixed points together with homoclinic
and heteroclinic orbits connecting these.

The Poincare’-Bendixson theorem will be widely used to estabilish that stable equi-
librium points of a certain system are the only limit sets of the system itself. Notice
that in order to do that we need to rule out the presence of periodic solutions and
a sufficient condition is provided by the Bendixson-Dulac theorem.

Theorem 2.5.2 (Bendixon-Dulac) Let us consider the plane autonomous system asso-
ciated to the vector field V (x, y) =< f(x, y), g(x, y) >

dx

dt
= f(x, y)

dy

dt
= g(x, y)

Let R be a simply connected region of the plane. If the divergence of V has the same sign
(6= 0) almost everywhere in R, i.e. if

∇ · V =
∂f

∂x
+
∂g

∂y
> 0 or ∇ · V =

∂f

∂x
+
∂g

∂y
< 0 ∀ (x, y) ∈ R

then the system has no periodic solutions lying entirely within the region R.

Proof Without loss of generality, let us assume that

∇ · V =
∂f

∂x
+
∂g

∂y
> 0 ∀ (x, y) ∈ R

Let C be a closed trajectory of the plane autonomous system in R. Let D be the interior of
C. Then by Green’s Theorem we have that:∫∫

D

(
∂f

∂x
+
∂g

∂y

)
dxdy =

∮
C
(−g dx+ f dy) =

∮
C

(
−dy

dt
dx+

dx

dt
dy

)
= 0

This is a contradiction as we assumed a divergence greater than zero in R, so there can be
no such closed trajectory C.
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The next result characterizes stable manifolds of dynamical systems, and will
come handy estabilish some results about boundary lines of basins of attraction.

Theorem 2.5.3 (Stable-manifold) Let F ∈ Cr be a vector field of Rn, where r ≥ 2, r ∈
N. Let us suppose that p is an hyperbolic fixed point of F . Then it exists a manifold
Wp ∈ Cr of dimension n, called stable manifold, such that:

• p ∈ Wp;

• Locally to p, the tangent space of Wp coincides with the stable space of the lineariza-
tion of F at p;

• Wp is locally invariant and the restriction of the dynamical system ẋ = F to Wp

coincides with the restriction of an asintotically stable system;

• Wp is locally unique.
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2.6 important examples : the voter and majority models

In this part of the chapter we will consider the already presented voter and ma-
jority models, which will be analyzed by means of the theory that we have in-
troduced in this chapter. In particular, we will consider the homogeneous plain
version of such models, mainly under the mean field assumption. Afterwards, we
will introduce a simple generalized voter model in presence of two subpopula-
tions to give a foretaste of heterogeneous models.

2.6.1 Analysis of the voter model

We recall that in the voter model, at each discrete time step the interaction between
individuals can be described as follow:

• pick a random node (the voter).

• the voter adopts the state of a random neighbor with probability q, otherwise
it keeps its opinion.

Notice that the voter model is an example of dynamics induced by an homoge-
neous gossip interaction kernel. Indeed, the interaction kernel can be written in
the form

Θ(xv,x
′
v | x) =

∑
w∈Nv

Lvwθ(xv,x
′
v | xw) (47)

where L defines a simple random walk on the network and

θ(x,x′ | xw) =


q if x′v = xw

1− q if x′v = xv

0 otherwise

(48)

In the mean field hypothesis, we have that the transition probabilities for the type
process are given by Qp,p′ = pxpx′q. Notice that the anonymous interaction kernel
is Π(x,x′ | p) = px′q. If we consider a binary state space X = {0, 1}, we can apply
the hydrodynamic limit argument in order to find the corresponding ODE. Notice
that in this case, if we call z the fraction of ones in the population, then clearly we
have q+(z) = (1− z)zq and q−(z) = z(1− z)q. Thus, the drift operator becomes
F(z) = (1− z)zq − z(1− z)q = 0, which means that the voter model has no drift.
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Indeed, let z(0) = z0 be the initial fraction of ones in the population, the Cauchy
problem is readily written as: 

dz

dτ
= 0

z(0) = z0

(49)

which gives the trivial solution z(τ ) = z0. Hence, in the plain voter model on the
complete graph, the initial fraction of 1’s is preserved in time (we will see that this
holds true also in more general networks). This is apparently in contrast with the
fact that, for finite N , the system will asymptotically converge to the all 0’s or to
the all 1’s configuration. However, the fact that we do not appreciate any dynamic
only means that, on avarage, nothing will happen in a time τ scaling with N as
the system “oscillates” nearby the initial condition. Eventually, these stochastic
fluctuations will bring the system to one of the two absorbing states (all ones or
all zeros) but this phenomena will happen for larger time scales and thus they
cannot be seen in the ODE.

Because of its simplicity, analytical results are available for the voter model also
when the dynamic takes place on general networks; we briefly sketch how this
more general analysis can be carried out. To begin with, the voter is intrinsically
a linear model, as already mentioned in the first chapter. If we call x(t) ∈ XV the
detailed configuration at time t ∈N, the evolution equation for x(t) is of the kind

x(t+ 1) = P (t) · x(t) (50)

where, in case at time t the node v copies the opinion of node w, then P (t) ∈ XV×V

is a diagonal matrix with all 1’s on the diagonal but the element (v, v) = 0 and
the element (v,w) = 1.

P (t) =



1 0 · · · · · · · · · · · · 0 0

0 1
...

...
... . . . . . . ...

...
... 1 0

...
... 0 1

...
... . . . 1 0

...
... . . . 0

0 0 · · · · · · · · · · · · 0 1


= Λ(v,w) (51)
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Notice that P (t) changes according to a simple probability distribution:P(P (t) = Λ(v,w)) =
1

N

1

dv
Av,w q

P(P (t) = I) = 1− q
(52)

where A is the adjacency matrix associated to the graph G where the process is
defined and I denotes the identity matrix. Starting from this, one can study the
avarage dynamic

x(t+ 1) = P · x(t) (53)

where x(t) = E[x(t)] and P = E[P (t)]. The above equation describes a consensus
dynamic driven by the stochastic matrix P , which turns out to describe a lazy
random walk on the graph G. If G is strongly connected, one can use the theory
of consensus dynamics to prove that the voter model always converges to an
absorbing state which is a consensus point, that is, all the individuals share the
same opinion; these states are also called “pure configurations”.

Closed results regarding exit probability and exit time can also be obtained in
general cases. For instance, if we consider a binary state space X = {0, 1} (notice
that in this case the pure configurations are 01 and 1) and a connected regu-
lar graph, we can notice the following striking fact regarding the voter dynam-
ics: the probability of a node making a transition from 0 to become 1 is always
equal to that of a node making a transition from 1 to 0. If we denote by N(t)
the process describing the number of 1’s in the population we thus have that
E[N(t+ 1)] = E[N(t)] for all instants t; this implies that E[N(t)] = N(0), which
in turn means that the avarage number of 1’s (or 0’s) is a conserved quantity. In
particular, denoting by N(∞) the asymptotic number of 1’s, we can say that

P(x(∞) = 1) = P(N(∞) = N) =
E[N(∞)]

N
=

E[N(0)]

N
=
N(0)

N
(54)

This result states that the exit probability related to the absorbing state 1 is equal to
the initial fraction of ones in the population. Notice that this is true independently
on how opinions are located in the network.

Computing exactly the exit time is instead more tricky as it does depend on the
network topology. Several closed results are available for general networks as one
can see in [bibl voter time]

2.6.2 Analysis of the majority model

Differently from the voter, the majority dynamics consider multibody interactions
and as result the model is in general non linear. Because of this, the study of the
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majority model on general networks can be extremely difficult and analytical re-
sults are known under mean filed-like assumptions. Notice that, in general graphs,
we can say for sure that pure configurations are absorbing state for the underly-
ing Markov chain, but in general, depending on the graph topology, there will be
many more. It can be proven that on the complete graph the pure configurations
are the only absorbing states.

The associated interaction kernel can be written as follows:

Θv(x,x
′ | x) =


1

|xmax|
if x′ ∈ xmax

0 otherwise
(55)

where x ∈ Nv and
xmax = argmax

x∈X
|{w ∈ Nv | xw = x}| (56)

Notice that the interaction kernel (55) is not a gossip interaction kernel.
Under the mean field assumption, one can write the transition probability of

the associated type process:

Qp,p′ =


px

1

|ymax|
if x′ ∈ ymax

0 otherwise
(57)

where in this case ymax = argmax(p).
We analyze now more in detail the case when X = {0, 1} and under the mean

field assumption. In particular, we consider a k-majority model, whose interaction
dynamics can be described as follows:

• pick a random node.

• the chosen node looks at k of its neighours (we assume k odd).

• the chosen node copies the majority opinion of this set of people.

In order to construct the transition probabilities, we need the probability to have
a majority of a certain opinion, say 1, in a set of k people chosen over N people,
given the fraction of ones in the population z at a certain time instant. Then, one
can prove that such a probability is given by

MN
k (z) =

k∑
i=dk2 e

(zNi )(
(1−z)N
k−i )

(Nk )
(58)
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If we consider the hydrodynamic limit, we obtain

lim
N→∞

k∑
i=dk2 e

(zNi )(
(1−z)N
k−i )

(Nk )
=

k∑
i=dk2 e

(
k

i

)
zi(1− z)k−i = Mk(z) (59)

Thus, we have that q+(z) = (1− z)Mk(z) and q−(z) = zMk(1− z). The simplest
case is when k = 3, which will be considered also in the heterogeneous models
that we are going to analyze in the next chapter. For this value of k, one can
evaluate M3(z) and some algebra shows that the ODE (38) becomes

dz

dτ
= z(1− z)(2z − 1) (60)

Although the solutions of the above equation can be found even in closed form,
a quick study of the right-hand side immediately shows that there exist three
equilibria: z1 = 0, z2 = 1, which are stable and z3 = 1

2 , which instead is unstable
and separates the two basins of attraction of the stable equilibria. This means
that if we start with more ones than zeros, then the system will converge to the
absorbing state where all individuals have opinion 1; the contrary happens if we
start with more zeros than ones. The following figure 5 shows same solutions of
ODE (60) for different initial conditions.
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Figure 5: Family of solutions of ODE (60) simulated in MATLAB.

Notice that in this case the asymptotics are perfectly in agreement with the
behavior of z(t) for finite N . Differently from the voter model, in this case, z(t)
gets close to the absorbing states in a time which scales with N and thus the
dynamic is captured by the ODE.
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N O D E - B A S E D H E T E R O G E N E O U S M O D E L S

In this chapter we are going to model different heterogeneous dynamics using
voter and majority models as building blocks. We will consider a population split-
ted into two heterogeneous subpopulations, namely: V = V1 ∪ V2. The analysis
will be mainly carried out under the mean field assumption and considering a
binary state space, which means that each individual is endowed with two possi-
ble opinions, namely X = {0, 1}. Moreover, in the following we will denote with
x and y the fraction of ones in the two subpopulations respectively. Thus, the
mathematical framework is the one described in section 2.4.3.

The models that we are going to analyze are characterized by individuals who
behave in different ways independently on who they are interacting with. For in-
stance, and invidial belonging to subpopulation V2 will follow a different dynamic
with respect to individuals belonging to V1 independently on whether it interacts
with people belonging to its subpopulation or not. We may also say that the het-
erogeneity affects the nodes (the individuals) and not the edges (the relationships)
of the network.

3.1 heterogeneous voter model

The model that we are going to build aims to generalize the voter model by con-
sidering the interaction between populations characterized by different levels of
open-mindedness. In particular, individuals belonging to V1 are more open mind
than those in V2 and they are more likely to change their opinion when interact-
ing with other people. This heterogeneity is modelled by considering two different
copying probabilities for the two population, such that q1 > q2.

The interaction dynamic is defined by considering the following interaction ker-
nel:

θv,w(x,x
′|y) =


q1 x′ = y

1− q1 x′ = x

0 otherwise

v ∈ V1 (61)

36
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θv,w(x,x
′|y) =


q2 x′ = y

1− q2 x′ = x

0 otherwise

v ∈ V2 (62)

Let us find the system of differential equation describing this model in the mean-
field approximation. In order to do that, we need the probabilities of increase and
decrease the number on ones in each population.

We have:

q+1 (x, y) = P(choose an agent in state 0 in V)

·P(choose any agent in state one to interact with) ·P(copy the state)
= (1− x)(ρ1x+ ρ2y)q1

The other probabilities evaluate in the same way. For variable x, we obtain the
following equation:

dx

dt
= (1− x)(ρ1x+ ρ2y)q1 − x(1− ρ1x− ρ2y)q1 (63)

We can do exaclty the same for variable y. After simplifying the equations, we end
up with the following planar system of ODE:

dx

dt
= q1ρ2(y− x)

dy

dt
= q2ρ1(x− y)

(64)

This is a linear system and the solution may be found even in closed form.
However, we can say everything without actually solving the system, starting
with the stability analysis.

The jacobian matrix is given by:

J =

[
−q1ρ2 q1ρ2

q2ρ1 −q2ρ1

]
(65)

and we immediately see that:

Tr(J) = −q1ρ2 − q2ρ1 < 0 Det(J) = q1q2ρ1ρ2 − q1q2ρ1ρ2 = 0 (66)
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and this implies that one eigenvalue is 0 and the other one is negative. In this sim-
ple case this means that the system is charachterized by simple stability. Indeed,
the system has infinitely many equilibria, which can be found in the kernel of J :

J

[
x

y

]
= 0 ⇐⇒

q1ρ2(y− x) = 0

q2ρ1(x− y) = 0
⇐⇒ x = y

This means that the equilibria lie on the main diagonal of the domain.
Of course, which of these equilibria will be reached by the system depends on

the initial conditions, i.e. the fractions of 1’s in the two populations at time 0. To
find the explicit dependence, we can observe that in this case we can even find
the explicit equation of the trajectories. Indeed, by dividing the second equation
by the first one in (64), we get:

dy

dt

dt

dx
=

dy

dx
= −q2ρ1

q1ρ2
⇐⇒ y = −q2ρ1

q1ρ2
x+ k (67)

where k ∈ R is a constant. We see that the trajectories are parallel lines.
We can find the equation of a particular trajectory by imposing the passage

through the generic initial point of a trajectory (x0, y0), we readily find:

q2ρ1x+ q1ρ2y = q2ρ1x0 + q1ρ2y0 (68)

We notice that the quantity E = q2ρ1x+ q1ρ2y is conserved and it is a first integral
for the system. Similarly to the plain homogeneous voter, even in the heteroge-
neous case we thus have a conservation law but, rather than the total fraction
of ones of the homogeneous voter model, the conserved quantity this time is a
weighted avarage of the two fractions of ones, where the weights are the two
copying probabilities.

In order to find which one of the infinitely many equilibria will be reached
depending on the initial conditions, we just impose the intersection of the above
trajectory with the equilibria line y = x. Trivially we get:

(q2ρ1 + q1ρ2)xeq = q2ρ1x0 + q1ρ2y0 ⇐⇒ xeq = yeq =
q2ρ1x0 + q1ρ2y0
q2ρ1 + q1ρ2

(69)

Thus, at equilibrium we have a total fraction of 1’s given by:
neq
N

= ρ1xeq + ρ2yeq =
q2x0 + q1y0
q2ρ1 + q1ρ2

(70)

Similarly to the classic voter model, even in this case we have two absorbing states
for the original model: all ones or all zeros (consensus) but in this case the mean-
field approximation predicts a magnetization of ones density, while in the plain
voter model we don’t appreciate any dynamic. In the following picture we show
the phase portrait of the system.
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Figure 6: Phase portrait of the heterogeneous voter model. The equilibria lie on the red
line. In red, two sample paths of the Markov chain are shown.

3.2 voter-anti voter model

The first heterogeneous model that we are going to consider involves the voter
dynamics and explores the effect of a subpopulation V2 that behaves in an anti
social fashion. In this case infact, while population V1 follows a plain voter model,
population V2 behaves in an opposite way, in an anti-voter fashion. This means
that a generic individual belonging to such population, instead of copying a ran-
dom neighbour’s opinion with a certain probability, will copy the opposite opinion
of the same neighbour.

This kind of dynamic can be defined by considering the following interacting
kernel:

θv,w(x,x
′|y) =


q1 x′ = y

1− q1 x′ = x

0 otherwise

v ∈ V1 (71)

θv,w(x,x
′|y) =


q2 x′ = ȳ

1− q2 x′ = x

0 otherwise

v ∈ V2 (72)
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where ȳ denotes the opposite state with respect to y. Notice that this is well de-
fined only in the case of a binary state space.

Let us find the differential system describing the dynamics of the model when
considering the hydrodynamic limit.

We may notice the equation governing the dynamic of pupulation V1 involving
variable x, following a plain voter model, can be derived in the same way as
shown in the analysis of the heterogeneous voter model that we have seen at the
end of chapter 2; in particular, the equation will be the same as equation (63). For
what concerns population V2, we just need to invert the probabilities to choose
any individual in state zero or one. More in details we have that

q+2 (x, y) = (1− y)(1− ρ1x− ρ2y)q2

q−2 (x, y) = y(ρ1x+ ρ2y)q2

which brings to

dy

dt
= (1− y)(1− ρ1x− ρ2y)q2 − y(ρ1x+ ρ2y)q2 (73)

After simplifying the above equation, the dynamical system of the model is the
following: 

dx

dt
= q1ρ2(y− x)

dy

dt
= q2(1− (1− ρ2)x− (1+ ρ2)y)

(74)

This is a linear system that may be solved even exactly. However, what we
are really interested in is the asymptotic behaviour, which can be analyzed by
performing the stability analysis.

Let us find the equilibria of the above system. It is immediate to see that
ẋ = 0 ⇐⇒ x = y. Then, by substituting in the second equation we obtain:

q2(1− (1− ρ2)x− (1+ ρ2)x) = 0 ⇐⇒ x =
1

2
(75)

Hence, the only equilibrium of the system is given by: (xeq, yeq) = (12 ,
1
2). Notice

that this point is the state of maximum entropy of the system, where in the two
populations coexist the two opinions with same weights.

To check whether the equilibrium it is stable or unstable, we consider the jaco-
bian matrix of the system evaluated in such a point:

J =

[
−q1ρ2 q1ρ2

−q2(1− ρ2) −q2(1+ ρ2)

]
(76)
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from which we see that:

Tr(J) = −q1ρ2 − q2(1+ ρ2) < 0 Det(J) = q1q2(1+ ρ2)ρ2 + q1q2(1− ρ2)ρ2 > 0

(77)
This implies that the jacobian J has two negative eigenvalues, which in turn im-
plies the global asymptotic stability of the equilibrium point independently on
the value of ρ2. The following figure shows a phase portrait of the voter-antivoter
model.
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Figure 7: Phase portrait of the voter-antivoter model simulated in MATLAB for q1 = 0.7,
q2 = 0.3 and ρ2 = 0.35. In red, the stable equilibrium point.

Voter-anti voter model dynamics

The analysis that we have carried out shows that the anti-voter individuals bring
the system to its maximum disorder and this happens independently on their num-
ber and the copying probabilities of both populations. This is in complete contrast
with the usual consensus dynamic that characterized the voter model and implies
that a perturbation caused even by a small group of anti social voter is enough to
bring the system to an highly disordered state.

3.3 majority model with anti-majority individuals

The model that we are going to consider in this section aims to describe an anti
social behaviour involving the majority dynamic. In particular, individuals be-



3.3 majority model with anti-majority individuals 42

longing to population V1 behaves according to a 3-majority model, while people
belonging to V2 follows a 3-minority dynamic, that is, an individual will copy the
minority opinion among three randomly chosen people.

In order to build the differential system governing the model in the hydrody-
namic limit, we need the probability to increase and decrease the fraction of ones
for both populations. For what concerns population V1, one can use equation (59)
to write down the probability to find a majority of ones among three randomly
chosen individuals; let z = ρ1x+ ρ2y be the total fraction of ones in the whole
population, then:

M3(z) =
3∑
i=2

(
3

i

)
zi(1− z)3−i = 3z2 − 2z3 (78)

Notice that the probability to have a minority of ones is obviously equal to the
probability of having a majority of zeros, which is given by

M3(1− z) =
3∑
i=2

(
3

i

)
(1− z)iz3−i = 2z3 − 3z2 + 1 (79)

Thus, we have that q+1 (x, y) = (1− x)M3(z) and q−1 (x, y) = xM3(1− z) are the
transition probabilities for population V1. Instead, for individuals belonging to
V2 we have q+1 (x, y) = (1− y)M3(1− z) and q−1 (x, y) = yM3(z). The differential
system governing the model is then readily written as follows:

dx

dt
= (1− x)M3(z)− xM3(1− z)

dy

dt
= (1− y)M3(1− z)− yM3(z)

(80)

This can be also be written explicitely in terms of variables x and y:
dx

dt
= −2ρ31x3 + 3ρ21(2ρ2y+ 1)x2 + (6ρ1(1− ρ2y)ρ2y− 1)x+ ρ22y

2(3− 2ρ2y)

dy

dt
= 1− y− (3− 2ρ1x− 2ρ2y)(x− ρ2x+ ρ2y)

2

(81)
Differently from the heterogeneous voter models, this system is clearly non

linear and looking for an exact solution seems hopelessly complicated. However,
what really matters, from the point of view of the mean-field approximation, is
the asymptotic behaviour of the solutions.
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Stability analysis

In order to find the equilibria we must solve the non linear algebrical system
dx

dt
= 0

dy

dt
= 0

This non-linear system admits three solutions and with some effort we can show
that they are given by:

(xeq, yeq)I =
(
1

2
,
1

2

)

(xeq, yeq)II =
(
1

2
−

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
+

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

)

(xeq, yeq)III =
(
1

2
+

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
−

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

)
We can see that equilibrium I always exists while II and III are reals only for
ρ2 < 1/6 and ρ2 > 1/2. Moreover, a quick study shows that for ρ2 > 1/2 equilibria
II and III are not admissible as some component is negative. Finally, we notice that
equilibria II and III are symmetric to each other with respect to the main diagonal
of the phase space (equilibrium I is symmetric to itself as it lies on the main
diagonal). This is an obvious consequence of the fact that our system is perfectly
symmetric with respect to fractions of ones and zeros.

From this result we can already guess that some bifurcation occurs around ρ2 =
1
6 . Let us carry out the stability analysis to check that.

Equilibrium I
Let us start with equilibrium I. The jacobian matrix of the system evaluated in

that point is:

JI =


1

2
(1− 3ρ2)

3

2
ρ2

3

2
(1− ρ2) −3

2
ρ2 − 1

 (82)

The eigenvalues are:

λ1 = −1 λ2 =
1

2
(1− 6ρ2)



3.3 majority model with anti-majority individuals 44

from which we immediately see that the equilibrium is asymptoticaly stable when
ρ2 > 1/6 and is unstable for ρ2 < 1/6. Notice that this equilibrium corresponds to
the state of maximum entropy for the system.

Equilibrium II
The Jacobian matrix is:

JII =


6ρ22 − 8ρ2 + 1

2ρ2 − 1

6ρ22
2ρ2 − 1

6(1− ρ2)ρ2
2ρ2 − 1

3ρ2 +
ρ2 + 1

2ρ2 − 1

 (83)

The eigenvalues are:
λ1 = −1 λ2 = 6ρ2 − 1

and this time the equilibrium is asymptoticaly stable when ρ < 1
6 and unstable for

ρ2 >
1
6 , as we could expect.

In this case we have that the total fraction of ones is given by:

ρ1xeq + ρ2yeq|II =
1

2
−
√
6ρ2 − 1

2
√
2ρ2 − 1

(84)

Equilibrium III
The stability resulst are exactly the same as equilibrium II.
In this case we have a fraction of ones given by:

ρ1xeq + ρ2yeq|III =
1

2
+

√
6ρ2 − 1

2
√
2ρ2 − 1

(85)

The results that we have just derived show that a supercritic pitchfork bifurca-
tion occurs around ρ2 =

1
6 .

Now that we have discussed the local equilibrium properties, in the following
we use the theory of planar differential systems in order to the dynamics of the
model from the global point of view, in both cases for ρ2.

Proposition 3.3.1 The equilibrium I is globally stable for the majority-minority model
for ρ2 > 1/6. Moreover, the three equilibria I, II and III are the only attractors for the
system.

Proof Since we are dealing with planar continuous dynamic systems, the Poincare’-
Bendixon theorem comes in help. Indeed, in our case it’s enough to exclude the presence of
attractive limit cycles to conclude that our equlibrium points are the only attractors for the
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system. In particular, this would mean that equilibrium I is globally stable (for ρ2 < 1/6),
as its attractive region would be the whole space.

In order to rule out the presence of limit cycles, we use the Bendixson-Dulac theorem.
By computing the divergence of the vector field we have that:

∂f

∂x
+
∂g

∂y
= 6 (2ρ2 − 1)︸ ︷︷ ︸

>0 or <0

(−ρ1x− ρ2y)︸ ︷︷ ︸
<0

(1− ρ1x− ρ2y)︸ ︷︷ ︸
>0

−2 (86)

We notice that when ρ2 ≥ 1/2, then 2ρ2 − 1 ≥ 0 and the divergence is negative. When
instead ρ2 < 1/2 the product of the three factors in (27) is positive and we can say
anything just looking at the signs. However, we can notice that in this case the maximum
value for the divergence is achieved for x = y = 1/2 and this value is −(3ρ2 + 1/2),
which is negative as well and this implies that the divergence is negative even for ρ2 < 1/2.
This holds ∀ (x, y) ∈ [0, 1]2. Thus, the divergence must be always negative over the domain
in any case. By Bendixson-Dulac theorem, no limit cycles can exist in the domain, which in
turn implies that equilibrium I is globally stable because of Poincare’-Bendixson theorem.

Figure 8 shows a phase portrait of the system when ρ2 >
1
6 .
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Figure 8: Phase portrait of the model in the case ρ2 > 1/6 simulated in MATLAB. We can
see that equilibrium I is globally stable for the system. In red and green two
sample paths of the underlying Markov process are shown.

We can say almost everything even about the two basins of attraction in the case
0 < ρ2 <

1
6 , when two stable equilibria coexist. Figure 9 shows the phase portrait
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of the model in the case ρ2 = 0.08. The black stars denote the two stable equilibria,
and the trajectories have different colours depending on which equilibrium are
converging to. We can clearly appreciate the two basins of attraction as well as
their separation boundary, which is the black-thick line in the picture. In this
case infact, the boundary turns out to be the stable manifold of the hyperbolic
equilibrium I (which is an unstable saddle).

Indeed, since we are dealing with a smooth vector field and equilibrium I is
hyperbolic, by the Stable-Manifold theorem we know that the unique stable man-
ifold relative to equilibrium I is a smooth manifold and its tangent space has the
same dimension as the stable manifold of the linearization of the system at equi-
librium I. This means that we can at least approximate the stable manifold (our
boundary) with the stable space of the linearized system around equilibrium I.
Such stable space is the eigenspace associated with the negative eigenvalues of
jacobian (82). Of course, since we have only one negative eigenvalue, the stable
space has dimension 1, which means that is a line.

By computing the eigenvectors of the jacobian matrix (82), it’s easy to see that
the stable space is given by LI = {v ∈ R2 : v = a( ρ2

ρ2−1 , 1)
T , a ∈ R}. This line

is our approximate boundary. Infact, simply translating it to let it pass through
equilibrium I in our coordinate system, we obtain the explicit equation of the
boundary line (the black one in the picture):

y = −1− ρ2
ρ2

x+
1

2ρ2
=⇒ ρ1x+ ρ2y =

1

2
(87)

The above equation shows that the boundary line is the locus where the total
number of ones is 1

2 and the system lies in a disordered state. As it is clear from
the picture, simulations confirm that this is a very good approximation of the
basins of attraction’s boundary, even when we are not in the neighbourhood of
equilibrium I.

Given two initial fractions of 1s x0 and y0 in the respective populations, we can
thus say the following:

• If ρ1x0 + ρ2y0 >
1
2 , so that there are more ones than zeros, then the trajectory

will converge to equilibrium III.

• If ρ1x0 + ρ2y0 <
1
2 , so that there are more zeros than ones, then the trajectory

will converge to equilibrium II.

This agrees with what we could have expected: if we start with more ones than
zeros, the system will end up in the equilibrium with more ones than zeros (equi-
librium III), viceversa it will converge to equilibrium II.
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Figure 9: Phase portrait of the model in the case of ρ2 < 1/6 simulated in MATLAB. In
particular, we have chosen ρ2 = 0.08. We can appreciate the boundary line of the
basins of attraction (the black one). In green, two sample paths of the underlying
Markov chain are shown.

Simulations allow us to see also the polarization phenomena occurring for ρ2 <
1/6. We can notice that, in both equlibria, one of the two pupulation reaches a
large fraction of ones, while the other one, because of simmetry reasons, the same
fraction of zeros. We can understand this also looking at the analytic expressions
of equilibria II and III. This means that a state very close to consensus is reached
in the two populations. This is more effectively shown in figure 10.
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(a) Equilibrium I
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(b) Equilibrium II
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(c) Equilibrium III

Figure 10: Phase transitions of the model visualized in a sparse matrix fashion. Each dot
insiede the square represents one individual and can be colored in blu or white
whether its opinion is one or zero respectively. The dots inside the red rectan-
gles are the anti majority inividuals.

The dynamics of the mixed majority-minority model

The result that we have derived show that a phase transition occurs in the model
at ρ2 = 1

6 . In particular, the effect of the anti majority individuals becomes really
effective when ρ2 >

1
6 . Indeed, above this threshold they are in enough number to

bring the system to complete disorder. Instead, when ρ2 < 1
6 , two stable equilibria
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very close to polarized consensus points appear. We have seen that the basins of
attraction of these equilibria are separated by the locus of points where the total
fraction of one and zero opinions are the same. If the system starts with more ones
than zeros, then the system converges towards the stable point characterized by
the largest fraction of ones; conversely, the other equilibrium is reached when the
at the initial conditions there are more zero-opinions than one-opinions. Moreover,
when ρ2 < 1

6 , it is interesting to observe that the anti majority dynamic pursued by
individuals belonging to V2 gives rise to a quasi-local consensus within the popu-
lation itself. This high-level feature arising from the model is rather surprising as
the anti majority dynamic tries to create disagreement and not consensus.

3.4 majority-voter model

In this part of the chapter we will consider a mixed model, where population
V1 follows a 3-majority model while population V2 a voter model. To make the
two models more comparable, we introduce a copying probability even for the
majority model, in the sense that an agent will copy the local majority state with
a certain probability q1, while it will keep its opinion otherwise.

Differently from the models with anti social individuals that we have seen so
far (the anti-voter and the anti-majority), in this case we don’t have an antisocial
behaviour and both dynamics, separately considered, tend to a consensus point.
In fact, we can observe that the two consensus states (all ones and all zeros) are
both absorbing states for the original Markov chain of this mixed model.

Notice that we have already derived in the previous models the two equations
that we need in order to define the differential system of ODE. Thus, the The
mean-field dynamic is governed by the following dynamic system:

dx

dt
= −2ρ31x3 − 3ρ21(2ρ2y+ 1)x2 + (6ρ1(1− ρ2y)ρ2y− 1)x+ ρ22y

2(3− 2ρ2y)

dy

dt
= q2(1− ρ2)(x− y)

(88)
Let us carry out the stability analysis.

Stability analysis

From the second equation of the system we easily get that at equilibrium must be:
q2(1− ρ2)(x− y) = 0 ⇐⇒ x = y. Substituting in the first equation we obtain:

−2ρ31x3 + 3ρ21(2ρ2x+ 1)x2 + (6ρ1(1− ρ2x)ρ2x− 1)x+ ρ22x
2(3− 2ρ2x) = 0
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This equation can be simplified and is equivalent to:

x((3− 2x)x− 1) = 0 (89)

It is immediate to see that the above equation admits the solutions x1 = 0,x2 =
1
2

and x3 = 1. Thus, the system admits the following three equilbria:

(xeq, yeq)I = (0, 0) (xeq, yeq)II =
(
1

2
,
1

2

)
(xeq, yeq)III = (1, 1) (90)

Notice that points I and II represent the consensus states while equilibrium II is
the state of maximum entropy. Let us now check the stability properties of these
points.

Equilibrium I
The jacobian matrix is:

JI =

[
−q1 0

q2(1− ρ2) −q2(1− ρ2)

]
(91)

and we see that:

Tr(J) = −q1 − q2(1− ρ2) < 0 Det(J) = q1q2(1− ρ2) > 0

This implies that the jacobian has two negative eigenvalues and so equilibrium I
is asimptotically stable.

Equilibrium II
The jacobian matrix is:

JII =

 1

2
(q1 − 3q1ρ2)

3

2
q1ρ2

q2(1− ρ2) −q2(1− ρ2)

 (92)

We can notice that:
Det(J) = −1

2
q1q2(1− ρ2) < 0

and this means that the product of the eigenvalues is negative, so one eigenvalue
must be negative and the other one positive. Hence, we conclude that the equilib-
rium point is an unstable saddle point.

Equilibrium III
The jacobian is exactly the same as equilibrium I (91). Hence, equilibrium III is

asimptotically stable as well.
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From the stability analysis we can observe that the mean-field dynamic matches
the asymptotic dynamic of the original markov chain, as the stable equilibria are
the consensus points, which in turn are exactly the absorbing states of the under-
lying stochastic Markov process. Moreover, those equilibria are the only attractors
for the system, as we prove in the following.

Proposition 3.4.1 The three equilibria I, II and III are the only limit sets for the system.

Proof By Poincare’-Bendixson theorem, we just need to rule out the presence of limit
cycles and in order to do that we use the Bendixson-Dulac theorem.

Computing the divergence of the vector field we can see that :

∂f

∂x
+
∂g

∂y
= −q2ρ1︸ ︷︷ ︸

<0

+q1(−1−6ρ1︸ ︷︷ ︸
<0

(−ρ1x− ρ2y)︸ ︷︷ ︸
<0

(1− ρ1x− ρ2y)︸ ︷︷ ︸
>0

) (93)

Notice that we can say anything just looking at the signs as in the second addendum on
the right hand side we have the sum between a positive and a negative term. However, we
the help of Mathematica one can see that the divergence doesn not change its sign for any
values of the parameters.

By Bendixson-Dulac theorem, no limit cycles can exist in the domain, which in turn im-
plies that equilibria I, II and III are the only attractors for the system because of Poincare’-
Bendixson theorem.

Even in this case, we can say almost everything about the two basins of attrac-
tion. Indeed, we can use the same argument that we used in the majority-anti-
majority model to approximate the boundary of the basins with the stable space
of the saddle equilibrium point. By computing the eigenvector associated to the
negative eigenvalue of jacobian (92), we find that the corresponding eigenspace
(the stable space) is describes a line whose angular coefficient is given by:

m =
4q2ρ1

2q2ρ1 − q1(3ρ2 − 1)−
√
8q1q2ρ1 + (q1 − 2q2ρ1 − 3q1ρ2)2

(94)

Translating it to let it pass through equilibrium II in our coordinate system we
obtain the equation of the boundary line: y = mx + 1

2(1−m). Notice that this
time the boundary does not have a simple interpretation as a particular locus as
in the majority-anti-majority model. Neverthless, simulations perfectly agree with
this result, as is shown in figure 11 where we plot the phase portrait of the model
and the boundary line (the black-thick line).

It is interesting to investigate the extreme cases that can occur in the model
depending on the population fractions. We can notice that, keeping q1 and q2 fixed,
when we have no voter individuals (all majority’s), i.e. ρ2 → 0, then m → −∞
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Figure 11: Phase portrait of the model with ρ2 = 0.1, q1 = 0.4 and q2 = 0.7 simulated in
MATLAB. We plot also two sample paths of the underlying Markov chain (in
green), which considers a population of N = 10000 individuals.

and the boundary line tends to be vertical. Conversely, when we have only voter
individuals, i.e. ρ2 → 1 then m → 0 and the boundary tends to be horizontal.
In figure 12 we plot the angular coefficient of the boundary line as a function of
ρ2 ∈ [0, 1].
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Figure 12: Angular coefficient of the boundary of the basins of attractions.
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(a) Almost all majority individuals (ρ2 = 0.05).

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(b) Population split in two (ρ2 = ρ1 = 0.5).
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(c) Almost all voter individuals (ρ2 = 0.95).

Figure 13: The two extreme and intermediate cases of the model.

From the figure is possibile to notice that, when we have almost all majority
individuals (case (a)), then as we could expect, the only thing that matters is the
dominant opinion among them, regardless of the voters opinion. In other words,
the dominant opinion in the majority population wins, so that if the majority
agents have more ones than zeros, the population will achieve consensus in all-
ones-state, otherwise the system will converge towards the all-zeros equilibrium.

The same, but with the voter individuals, happens in the other extreme case
(c), when we have almost all voters. In this case of course, will be the voters’
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dominant opinion to prevail. In this case, we can see from the picture that for a
while, as we could expect, we don’t appreciate any dynamic of the voters opinion
(y is almost costant) like in the classic voter model. After same time, the trajectory
meets the unstable manifold of the central saddle equilibrium and then converges
to a consensus.

The intermediate case (b) is when ρ2 = ρ1 =
1
2 . For these values, and if q1 = q2,

we have m = −1 and the equation of the boundary line boils down to y = 1− x.

Mixed majority-voter model dynamics

As we have already pointed out, this model does not present anti social individ-
uals and the analysis that we have carried out shows indeed a perfect match be-
tween the mean field model dynamics and the expected behaviour of the Markov
process. The stability analysis has shown that the system admits the two pure con-
figurations as asymptotically stable equilibria for every ρ2 ∈ (0, 1) and the system
always converges to such points as no other stable attractors exist as proven in
proposition 3.4.1. The boundary of the two basins of attraction is a line whose
angular coefficient depends on q1, q2, ρ2 in a complicate manner as shown in (95).
Finally, we have seen that in the extreme cases, that is, when the population is
composed by almost all voters or all majority individuals, the system goes to-
wards the consensus point characterized by the preferred initial opinion of the
dominant population.



4
E D G E - B A S E D H E T E R O G E N E O U S M O D E L S

In this part we want to consider a differend kind of heterogeneous model. Simi-
larly to the previous models, we will still consider two differend population and
keep track of them with the same notations. However, if before we modelled the
heterogeneity by considering a different dynamic for each population, in this case
will be some edges between the two population that will generate a different kind
of interaction between nodes if selected. In particular, we will consider as hetero-
geneous edges the ones connecting the two subpopulations. In other words, we are
modeling a situation where the two subpopulations behave in a certain way as
long as they interact within themselves through the “normal” edges, but when
an individual of a population interacts with one of the others, then it behaves in
a different way, in general following a different kind of dynamic. In some sense,
this is a more general framework where each individual, and thus each popula-
tion, has awareness of itslef, since it is able to recognize different people. Figure
14 shows an example involving a majority dynamic, where the green edges flips
the opinion of the corresponding neighbours of the selected node.

55
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(c) It selects the resulting local majority,
in this case 1.

Figure 14: An example of majority dynamic with heterogeneous edges.

This kind of “edge-based” heterogeneity can hold for both population, and in
that case we speak about symmetric heterogeneous edges, or instead it can affect
only one population, in such case speak about asymmetrc heteorgeneous edges.
We are going to investigate three edge-based heterogeneous models: the first one
is characterized by symmetric heterogeneous edges, while the other two feature
asymmetric heteorgeneous edges. Notice that for both cases, the interaction ker-
nels of these kind of models can be described in the general form presented in
chapter 2.

4.1 majority model with symmetric anti majority edges

The first model with heterogeneous bonds that we consider involves the majority
dynamic. Indeed, we consider two populations V1 and V2 following a 3-majority
model. The heterogeneity is modelled as follows: when an agent of a certain pop-
ulation chooses an agent of the other population to interact with, it “sees” its
opinion flipped. We can interpret this as a willing to differentiate the opinions
between the two populations and thus, we can expect a polarization of opinions
at equilibrium and not a global consensus.



4.1 majority model with symmetric anti majority edges 57

In order to find the dynamic system describing the mean-field and hydrody-
namic limit behaviour, we need to find the probabilities of increasing and de-
creasing the fractions of ones for each population. In the following, we evaluate
in details the probability of increasing the fraction of ones in population V1, the
others can be evaluated by means of the same argument.

To begin with, when an individual of V1 selects three other random people to
interact with, four possible cases can occur: we can select none or one or two or
three individuals belonging to V2 (we could also read: none or one or two or three
anti-bonds). These cases are depicted in the following picture, where the colored
nodes are those belonging to V2.

a b c d

Figure 15: The four possible cases in the heterogeneous-bonds model.

Referring to the above picture, the probability to increase the number of ones
of population V1 can be computed as: P(ones increase) = P(increase in (a) ∪
increase in (b)∪ increase in (c)∪ increase in (d)). We have:

a. In this case we have all nodes belonging to population V1, which means that
we have selected three times population V1. Then, in order do copy the one
state, we need a majority of ones in the three nodes.

We get: P(increase in (a)) = ρ31(1− x)(3x2(1− x) + x3).

b. This time we have selected two nodes from V1 and a node belonging to V2,
which means that we have an anti edge. We can compute the probability to
copy state one by conditioning on the state of the V2-node.

We get: P(increase in (b)) = 3ρ21ρ2(1− x)((1− y)(1− (1− x)2) + yx2).

c. This time we have two anti link and a normal one and it is convenient to
compute the probability by conditioning on the state of theV1-node.

We get: P(increase in (c)) = 3ρ1ρ
2
2(1− x)((1− x)(1− y)2 + x(1− y2)).

d. Finally, we have the case where we select only anti links, thus we need a
majority of zeros (or a minority of ones, which is the same of course) to copy
opinion one.

We get: P(increase in (d)) = ρ32(1− x)(3y(1− y)2 + (1− y)3).
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Finally, we can compute the probability to increase the number of ones in pop-
ulation V1 as follows:

P(ones incr. in V1) = P(incr. in (a)∪ incr. in (b)∪ incr. in (c)∪ incr. in (d))
= P(incr. in (a)) + P(incr. in (b)) + P(incr. in (c)) + P(incr. in (d))

= (1− x)(ρ2 + ρ1x− ρ2y)2(ρ2 + ρ1(3− 2x) + 2ρ2y)

We can use the same argument to find the probability to decrease the fraction ones
in V1 and the same can be done for population V2. Doing that and simplifying the
equations, we obtain:

dx

dt
= −x+ (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1))

dy

dt
= 1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1))

(95)

Stability analysis

In order to find the equilibria we must solve−x+ (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1)) = 0

1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1)) = 0
(96)

With some effort one can show that the system admits the following three solu-
tions:

(xeq, yeq)I = (0, 1) (xeq, yeq)II =
(
1

2
,
1

2

)
(xeq, yeq)III = (1, 0) (97)

Let us now check the stability properties of these points.

Equilibrium I
The jacobian matrix is:

JI =

[
−1 0

0 −1

]
(98)

and we immediately see that the two eigenvalues are equal to -1, so equilibrium I
is asintotically stable.

Equilibrium II
The jacobian matrix is:

JII =

 1

2
(1− 3ρ2) −3

2
ρ2

−3

2
(1− ρ2)

3

2
ρ2 − 1

 (99)
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and we see that:
Tr(J)− 1

2
< 0 Det(J) = −1

2
< 0

This implies that the jacobian has a negative and a positive eigenvalue, which
means that the point is an unstable saddle.

Equilibrium III
The results are the same as equilibrium I, thus the point is asintotically stable.

As we could expect, the stable equilibria correspond to the two polarization
points where the two populations reach local consensus. Furthermore, those points
are the only attractors for the system, as we prove in the following.

Proposition 4.1.1 The three equilibria I, II and III are the only limit sets for the system.

Proof By Poincare’-Bendixson theorem, we just need to rule out the presence of limit
cycles and in order to do that we use the Bendixson-Dulac theorem.

Computing the divergence of the vector field we can see that :

∂f

∂x
+
∂g

∂y
= −2(1+ 3(x− 1)x− 3ρ2(2x− 1)(x+ y− 1) + 3ρ22(x+ y− 1)2) (100)

Notice that we can say anything just looking at the signs. However, we can notice that the
function of two variables x and y defined by (100) on the compact set [0, 1]2 attains its
global maximum in it by Weierstrass theorem. Moreover, we can see that the divergence is
a concave function.

Hence, one can check that this global maximum is −1
2 by solving a convex optimization

problem, that is: 
max
x,y

[
∂f

∂x
+
∂g

∂y

]
s.t 0 ≤ x ≤ 1

0 ≤ y ≤ 1

= −1

2

This implies that the divergence is always negative and non zero in its domain of defi-
nition. By Bendixson-Dulac theorem, no limit cycles can exist in the domain, which in
turn implies that equilibria I, II and III are the only attractors for the system because of
Poincare’-Bendixson theorem.

To complete the global stability analysis we need to charachterize the two basins
of attractions. We use the usual argument of finding the stable space of the saddle
equilbrium, which is our boundary. By computing the eigenvector of jacobian (99),
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we see that the stable space is given by the following line: LI = {v ∈ R2 : v =
a( ρ2

1−ρ2 , 1)
T , a ∈ R}, from which we find the equation of the boundary line:

y =
1− ρ2
ρ2

x+
2ρ2 − 1

2ρ2
=⇒ ρ2y− ρ1x = ρ2 −

1

2
(101)

which can be re-written as:

ρ2y− ρ1x =
1

2
(ρ2 − ρ1) (102)

From the last equation we see that this locus of points has a simple interpretation:
it is the locus of points where the difference between the two fractions of ones
with respect to the whole population is proportional to the difference between the
population fractions.

Given two initial fractions of ones x0 and y0 in the respective populations, we
can thus say the following:

• If ρ1x0 − ρ2y0 > 1
2(ρ2 − ρ1), then the trajectory will converge to equilibrium

III.

• If ρ1x0 − ρ2y0 < 1
2(ρ2 − ρ1), then the trajectory will converge to equilibrium

II.
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(a) ρ2 = 0.2.
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(b) ρ2 = ρ1 = 0.5.
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(c) ρ2 = 0.8.

Figure 16: Three portraits of the model for different values of ρ2 simulated in MATLAB.
We can appreciate the boundary of the basins of attractions.

Dynamics of the majority model with symmetric heterogeneous edges

The analysis that we have carried out shows that the model converges to one
of the two polarization points of local consensus ((0, 1) and (1, 0)) for any value
of ρ2 ∈ (0, 1); in particular, we do not have phase transitions. This kind of dy-
namic is coherent with the expected dynamic of the underlying Markov process.
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Indeed, we can observe that the two polarization points are absorbing states for
the Markov chain. The two basins of attractions of the polarization points are sep-
arated by the line (102), whose angular coefficient is give by m = ρ1

ρ2
. In figure 16

we can observe three different portraits for different values of ρ2. We can notice
that, in the extreme cases ρ2 → 0 and ρ2 → 1, the boundary line tends to became
vertical and horizontal respectively. This means that the dominant opinion of the
largest subpopulation will prevail.

4.2 majority model with asymmetric anti majority edges

In this section we consider a model with asymmetric heterogeneous edges, in the
sense that only one population is affected by the anti-edges as it interacts with
the other one. More in detail, we consider individuals belonging to population
V1 following a plain 3-majority model, independently on who they interact with.
Individuals belonging to population V2 instead, follows a 3-majority model locally
and are affected by heterogeneous edges whenever they interact with population
V1. This means that an agent in population V2 sees a V1-agent with its opinion
flipped. This kind of model may be interpreted as the interaction between two
populations, where one tries to reach a global consensus (V1) and the other one is
more conservative and looks for a local consensus. Hence, we expect interesting
threshold phenomena with respect to the parameter ρ2.

Since the two dynamics involving the populations have been already studied
in this dissertation, we already have the two equations that compose the model.
Indeed, the mean field model is given by:

dx

dt
= −2ρ31x3 − 3ρ21(2ρ2y+ 1)x2 + (6ρ1(1− ρ2y)ρ2y− 1)x+ ρ22y

2(3− 2ρ2y)

dy

dt
= 1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1))

(103)
The next step is carrying out the stability analysis.

Stability analysis

In order to find the equilibria, we must solve
−2ρ31x3 − 3ρ21(2ρ2y+ 1)x2 + (6ρ1(1− ρ2y)ρ2y− 1)x+ ρ22y

2(3− 2ρ2y) = 0

1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1)) = 0

(104)
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Unfortunately, in this case is not possible to find the equilibria in closed form,
with the only exception of the point (xeq, yeq)I = (12 ,

1
2), which can be easly veri-

fied to solve the equilibrium equations for every value of ρ2. With the help of the
Mathematica software, one can numerically find the equilibria and we see that the
non linear system of equations admits only equilibrium I as solution in a certain
range of values of ρ2; outside this range, the system admits three real solutions:
one it is of course equilibrium I and other two real solutions different from equi-
librium I, which will be called equilibrium II and III. Even without knowing the
exact form of the solutions, by running simulations we can see equilibria II and
III are always symmetric with respect to y = 1− x. This can be stated analytically:

Proposition 4.2.1 Let (x∗, y∗) ∈ [0, 1]2 be an equilibrium solution of system (104). Then,
(1− x∗, 1− y∗) is also a solution.

Proof The proof is straightforward. Indeed, by substituting x→ 1− x and y → 1− y in
system (), we obtain that:
−2ρ31(1− x)3 − 3ρ21(2ρ2(1− y) + 1)(1− x)2

+(6ρ1(1− ρ2(1− y))ρ2(1− y)− 1)(1− x) + ρ22(1− y)2(3− 2ρ2(1− y)) = 0

1− (1− y)− ((1− x)− ρ2(1− x− y))2(3− 2(1− x) + 2ρ2(1− x− y)) = 0

(105)
After semplifying, the above system can be reduced to:

−2ρ31x3 − 3ρ21(2ρ2y+ 1)x2 + (6ρ1(1− ρ2y)ρ2y− 1)x+ ρ22y
2(3− 2ρ2y) = 0

1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1)) = 0

(106)
which is the same as system (104).

By running simulations, we can notice that equilibrium I is asymptotically stable
in its range of existence and, outside it, it becomes unstable and the other two
stable equilibria appear. In order to find informations about this bifurcation, we
investigate the stability properties of this equilibrium.

The jacobian computed in equilibrium I is:

JI =


1

2
(1− 3ρ2)

3

2
ρ2

3

2
(ρ2 − 1)

3

2
ρ2 − 1

 (107)
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The eigenvalues are given by:

λ1 =
1

4

(
−1− 3

√
8ρ22 − 8ρ2 + 1

)
λ2 =

1

4

(
−1+ 3

√
8ρ22 − 8ρ2 + 1

)
(108)

We can study these two functions as ρ2 varies in [0, 1]. The following picture shows
both λ1 and λ2.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

ρ2

λ1,2

λ1
λ2

<(λ1,2)

Figure 17: Eigenvalues λ1 and λ2 as functions of ρ2.

The red part is the real part of the two eigenvalues when they are complex
numbers for certain values of ρ2. We can notice that λ1 is always negative and so,
the equilibrium point will be stable when also λ2 is negative. We easily find that
λ2 < 0 ⇐⇒ 1

6(3−
√
5) < ρ2 <

1
6(3+

√
5). Thus, we can say the following:

(xeq, yeq)I =
(
1

2
,
1

2

)
is:


unstable 0 < ρ2 <

1

6
(3−

√
5) or

1

6
(3+

√
5) < ρ2 < 1

stable
1

6
(3−

√
5) < ρ2 <

1

6
(3+

√
5)

(109)
We can see that the system admits two bifurcation points where the central equi-
librium changes its stability properties. The first bifurcation occurs at ρ2 = 1

6(3−√
5) ≈ 0.13 and the second one at ρ2 = 1

6(3+
√
5) ≈ 0.87. When equilibrium I is

unstable, the other two stable equilibria appear. Notice that these thresholds are
exactly the ones that define the range of existence of the equilibrium solutions.
More in details, the situation can be resumed as follows:

• When 0 < ρ2 <
1
6(3−

√
5) the system admits three equilibria: equilibrium I,

which is unstable, and other two equilibria that are stable.
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• When 1
6(3−

√
5) ≤ ρ2 ≤ 1

6(3+
√
5) the system admits only equilibrium I,

which is globally stable.

• When 1
6(3−

√
5) < ρ2 <

1
6(3+

√
5) the system admits three equilibria: equi-

librium I, which is unstable, and other two equilibria that are stable.

It is interesting to notice that there exist two range of values for ρ2 in which
the two eigenvalues associated to the jacobian (107) are both negative and reals.
Indeed, by the eigenvalues expressions (46) we see that they are reals if and only
if 8ρ22 − 8ρ2 + 1 ≥ 0 ⇐⇒ ρ2 ≤ 1

4(2−
√
2) or ρ2 ≥ 1

4(2+
√
2).

Using the same thechinque we used for the previous models, it is possibile to
approximate the boundary of the two basins of attractions, that appear in the
case when equilibrium I is unstable, with the stable space of the equilibrium itself
(which is a saddle point). In particular, we find that the angolar coefficient of the
boundary line is:

m =
2(1− ρ2)

2ρ2 − 1+
√

8ρ22 − 8ρ2 + 1
(110)

The above formula holds for 0 < ρ2 <
1
6(3−

√
5) and 1

6(3+
√
5) < ρ2 < 1. It can be

noticed that when ρ2 → 0 ⇒ m → ∞ and the boundary line tends to be vertical;
conversely, when ρ2 → 1⇒ m→ 0 and the boundary line tends to be horizontal.

Dynamics of the majority model with asymmetric anti majority edges

The dynamics of the model can be resumed as follows in terms of values of ρ2:

• 0 < ρ2 <
1

6
(3−

√
5)

In this case the system admits two stable equilibria, which are symmetric
with respect to y = 1− x. By running simulations, we can observe that such
points are close to the two polarization points. This means that a quasi-local
consensus is reached within each subpopulations.

• 1

6
(3−

√
5) ≤ ρ2 ≤

1

6
(3+

√
5)

In this case the system admits only one equilibrium point (equilibrium I),
which is globally stable. Notice that in this range the system converges to-
wards the state of maximum entropy. As we have seen from the stability
analysis, from a topological point of veiw, the convergence can occur in two
ways: for 1

6(3−
√
5) < ρ2 ≤ 1

4(2−
√
2) the eigenvalues associated to equi-

librium I are both negative and reals and the equilibrium is a stable node;
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instead, for 1
4(2+

√
2) ≤ 1

6(3+
√
5), the eigenvalues are both complex with

negative real parts, thus the equilibrium is a stable focus.

• 1

6
(3+

√
5) < ρ2 < 1

In this case the system admits two stable equilibria, which are symmetric
with respect to y = 1− x. By running simulations, we can observe that such
points are close to the two consensus points. This means that a quasi-global
consensus is reached within the whole population.

In figure 18 we show four portraits of the model for different values of ρ2.
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(a) ρ2 = 0.1.
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(b) ρ2 = 0.13.
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(c) ρ2 = 0.5.
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(d) ρ2 = ρ1 = 0.9.

Figure 18: Four portraits of the model for different values of ρ2 simulated in MATLAB. We
can appreciate the different kind of convergence towards equilibrium I (figure
(b) and (c)) as well as the boundaries of the basins of attractions (figure (a) and
(d)).



5
B E Y O N D T H E M E A N F I E L D A N D K U RT ’ S T H E O R E M

In this chapter we will consider two heterogeneous model that, for different rea-
sons, goes beyond the “classical” models that we have seen so far. More in detail,
in the first section we will consider a model involving a full majority dynamic, for
which an individual copies the majority population observed among the whole
population. We will see that the need to model this kind of dynamic will bring to
a differential system with discontinuous right-hand side, a situation for which the
Kurt’s theorem does not hold.

In the second part of the chapter instead, we will drop the classical mean field
assumption by considering an anti social dynamic taking place over a star graph.
In particular, we will show some quasi-mean field results for such a model.

5.1 full majority model with asymmetric heterogeneous edges

As already anticipated, in this section we are going to deal with a differential
equation with discontinuous right-hand side. Thus, it is useful to introduce some
basic theory needed to deal with such equations. In particular, we will consider
the notion of solution in sense of Filippov. A complete analysis of this topic can
be found in [10] and [12].

5.1.1 Preliminaries on differential equations with discontinuous right-hand side

There are several definitions of solutions for differential equations with discontin-
uous right-hand side and a complete discussion about this theory is far beyond
the scope of this dissertation. For our purpose, however, it is enough to introduce
one of the best known approach to this problem, which is based on the concept of
differential inclusion.

We consider a generic system of the form:

dx

dt
= f(x) (111)

where f : Rn → Rn is a piecewise continuous function in a domain D. Moreover,
let S be a set (of measure zero) of points of discontinuity of the vector field f . The
main idea of most of the known definition of solution is to describe how the vector

68
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field behaves around each point of the domain. In particular, this is necessary in
order to deal with points belonging to the discontinuity set (around which the
vector field will assume different values). This is done by defining a set-valued
map F (x), with F : Rn → B(Rn), where B(Rn) denotes the collection of subset of
Rn. Just as a standard map or function takes a point in its domain to a single point
in another space, a set-valued map takes a point in its domain to a set of points in
another space. Furthermore, If at a point x the vector field f is continuous, then
the set F (x) consists of just one point which coincides with the value of the vector
field f at this point. Coversely, in a point of discontinuity of f , the set F (x) is
given in some other way.

Then, a solution of the equation (58) is called a solution of the differential inclu-
sion

dx

dt
∈ F (x) (112)

that is, an absolutely continuous vector-valued function x(t) defined on an interval
or on a segment I for which dx(t)

dt ∈ F (x(t)) almost everywhere on I .
A differential inclusion thus specifies that the state derivative belongs to a set of

directions, rather than being a specific direction. Of mayor interest are the meth-
ods of definition of the map F at the points of discontinuity of the function f ,
under which the above differential inclusion can be applied to approximate de-
scription of processes in real physical systems. In our case, we are going to con-
struct the map F by means of the Filippov set-valued map, which is defined as
follows:

Filippov set-valued map Given a vector field f : Rn → Rn, we define the associ-
ated Filippov set-valued map F [f ] : Rn → B(Rn) as follows:

F [f ](x) :=
⋂
δ>0

⋂
µ(S)=0

co{f(B(x, δ))\S} (113)

Here co denotes the convex closure, µ denotes the Lebesgue measure andB(x, δ)
is the ball centered in x with radius δ > 0.

The idea under the definition (60), as already mentioned above, is to look at
how the vector field looks like in a neighbourhood of a certain point (in partic-
ular, a point of discontinuity for f ), and the map F [f ](x) is independent on the
value of the vector field in x by construction. Specifically, for x ∈ Rn, the vector
field f is evaluated at the points belonging to B(x, δ). We examine the effect of
δ approaching 0 by performing this evaluation for smaller and smaller δ. For ad-
ditional flexibility, we exclude an arbitrary set of measure zero in B(x, δ) when
evaluating f , so that the outcome is the same for two vector fields that differ on
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a set of measure zero (for instance, the value of the Heaviside function in the
origin).

By means of the Filippov-set valued map definition, the equation (58) is replaced
by the differential inclusion

dx

dt
∈ F [f ](x) (114)

An absolutely continuous vector-valued function x(t) defined on an interval or on
a segment I which satisfies the above differential inclusion almost everywhere on
I , is called a Filippov solution of the equation (58). The next result establishes mild
conditions under which Filippov solutions exist.

Theorem 5.1.1 (Existence of Filippov solutions) Let f : Rn → Rn be measurable
and locally essentially bounded, that is, bounded on a bounded neighborhood of every point,
excluding sets of measure zero. Then, for all x0 ∈ Rn, there exists a Filippov solution of
(58) with initial condition x(0) = x0.

In most cases, like in the case of interest for us, the vector field f is piecewise
continuous.

Piecewise-continuous vector fields The vector field f : Rn → Rn is piecewise
continuous if there exists a finite collection of disjoint, open, and connected sets
D1, . . . ,Dm ⊂ Rn whose closures cover Rn, that is, Rn = ∪mj¬k=1Dk, such that,
for all k = 1 . . . ,m, the vector field f is continuous on Dk. We further assume
that the restriction of f to Dk admits a continuous extension to the closure Dk,
which we denote by fDk

. Every point of discontinuity of f must therefore belong
to the union of the boundaries of the sets D1, . . . ,Dm. Let us denote by Sf ⊆
∂D1 ∪ · · · ∪ ∂Dm the set of points where f is discontinuous. Note that Sf has
measure zero.

When f is piecewise continuous, the associated Filippov set-valued map can be
written more explicitely as follows:

F [f ](x) = co
{
lim
i→∞

f(xi) : xi → x,xi /∈ Sf

}
(115)

This is somehow more intuitive that the general definition (60). Notice that, at
points of continuity for f , that is x /∈ Sf , we have F [f ](x) = f(x). At points of
discontinuity of f , that is, for x ∈ Sf , F [f ](x) is a convex polyhedron in Rn of the
form

F [f ](x) = co{fDk
(x) : x ∈ ∂Dk} (116)
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It is useful to state also a theorem of uniqueness of solutions in the sense of Filip-
pov. The following result identifies sufficient conditions for uniqueness specifically
tailored for piecewise continuous vector fields.

Theorem 5.1.2 (Uniqueness of Filippov solutions) Let f : Rn → Rn be a piecewise
continuous vector field, with Rn = D1 ∪D2. Let Sf = ∂D1 = ∂D2 be the set of points
at which f is discontinuous, and assume that Sf is a C2-manifold. Furthermore, assume
that, for i ∈ {1, 2}, fDi

is continuously differentiable on Di and fD1
− fD2

is continuously
differentiable on Sf . If, for each x ∈ Sf , either fD1

(x) points into D2 or fD2
(x) points

into D1, then there exists a unique Filippov solution of (58) starting from each initial
condition.

5.1.2 Deduction and analysis of the model

The model that we consider here is a variation of the model 4.2 that we have seen
at the end of the last chapter. We consider again two populations: individuals
belonging to V1 follow a full majority dynamic while the ones belonging to V2

follow a 3-majority dynamic. Moreover, we consider the presence of asymmetric
heterogeneous edges connecting the two populations; these edges affect only in-
dividuals belonging to V2, who will see individuals belonging to V1 with flipped
opinions, as already explained in the previous chapter.

The interpretation of such a model can be the following: on one side we have
population V1, which is very democratic as it looks at the opinion of each individ-
ual and tries to reach a global consensus. On the other side, we have individuals
belonging to population V2, who tries to achieve a local consensus by means of a
3-majority dynamic and at the same time they try to differentiate their opinions
from those of V1-individuals.

In order to find the dynamic equation for population V1, we observe that in
the full majority it is enough to know the fraction of ones within the whole pop-
ulation (or of zeros of course) to know the majority at each instant of time. In
other words, an individual does not have to choose a group of random people
first; it will simply assume opinion 1 if the fraction of ones is greater than 1

2 and
instead will take opinion 0 in the other case. Furthermore, we assume that in case
of a tie (which means that the fraction of ones is exactly 1

2 ), the individual will
choose the opinion at random among the two. This means that the probability to
choose opinion one (or zero), given the actual fractions of ones within the whole
population, is a Heaviside step function of the fraction of ones within the whole
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population, which can be either 1 (ones majority), 0 (zeros majority) or 1
2 (tie). We

indicate such a function with

H

(
(1− ρ2)x+ ρ2y−

1

2

)
(117)

Thus, dynamic equation for population V1 is:

dx

dt
= (1− x)H

(
(1− ρ2)x+ ρ2y−

1

2

)
− x

(
1−H

(
(1− ρ2)x+ ρ2y−

1

2

))
= H

(
(1− ρ2)x+ ρ2y−

1

2

)
− x

(118)

Then, remembering the equation for population V2 from the previous model,
the equations describing the mean-field model are given by:

dx

dt
= H

(
(1− ρ2)x+ ρ2y−

1

2

)
− x

dy

dt
= 1− y− (x− ρ2(x+ y− 1))2(3− 2x+ 2ρ2(x+ y− 1))

(119)

Since the Heaviside function H(·) is discontinuos in the origin, the analysis of the
above system needs some extra care. To begin with, we need to understand how
solutions of the above system have to be interpreted. In particular, we will use the
definition of Filippov solution that we have introduced before.

To begin with, we can notice that the vector field is piecewise continuous. In
particular, the domain of definition of the vector field f can be decomposed into
the two sub-domains in which f is continuous: f : [0, 1]2 → R2 with [0, 1]2 =
D1 ∪D2 and

Sf = ∂D1 = ∂D2 =

{
(x, y) ∈ [0, 1]2 : ρ1x+ ρ2y =

1

2

}
(120)

is the discontinuity set. Moreover, let us call fy the y-component of the vector field
(notice that this component is continuous in the whole domain and its continuous
extension coincides with the value of component itself evaluated on the disconti-
nuity set); then, the two continuous extensions of f to the closure of D1 and D2

are respectively

fD1
= f1 =

[
−x
fy(S)

]
fD2

= f2 =

[
1− x
fy(S)

]
(121)

Moreover, in the following, let fN1 and fN2 be the projections of the vectors f1 and
f2 onto the normal to the line defined by S; the normal is directed towards the
domain D2.
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The solution of system (52) is understood as solution of the following differen-
tial inclusion

dX

dt
∈


fD1 (x, y) ∈ D1

{αf1 + (1− α)f2 : α ∈ [0, 1]} (x, y) ∈ S

fD2 (x, y) ∈ D2

(122)

Where for sake of notation we have grouped variables x and y into the vectorial
variable X .

Proposition 5.1.3 There exists a Filippov solution of the differential system (52) ∀ ρ2 ∈
(0, 1) and with initial condition x(0) = x0, y(0) = y0, for every (x0, y0) ∈ [0, 1]2.

Proof The vector field of system (52) is bounded and measurable ∀ ρ2 ∈ (0, 1). Then the
existence of a Filippov solution for every initial condition is proven by means of theorem
3.4.

For what concerns uniqueness, some extra care is needed. In particular, we can
observe that, for any value of ρ2, there exist points (x, y) belonging to the discon-
tinuity set S for which fD1

(x, y) and fD2
(x, y) point into D1 and D2 respectively

(figure 13). This means that fN1 < 0 and fN2 > 0 and theorem 3.5 cannot be applied.
At those points, the discontinuity set S is “repulsive”, in the sense that the vector
field brings a trajectory starting near S away from the set itself. Thus, the system
admits two different Filippov solutions starting from such a points, known as re-
plulsive solutions. Infact, in this case a trajectory may leave S under the effect of f1
or f2.

For instance, let us consider the case ρ2 < 1
2 , for which we have repulsive so-

lutions for every point belonging to the discontinuity set. Let us call for brevity
fy the y-component of the vector field of system (52) (notice that this component
is continuous in the whole domain). Then, the solutions of the two following sys-
tems are both a Filippov solution for system (52) with initial condition (x0, y0) ∈ S

dx

dt
= −x

dy

dt
= fy


dx

dt
= 1− x

dy

dt
= fy

(123)

After the bifurcation point, that is, for ρ2 > 1
2 , we still have presence of repulsive

solutions (as it is clear by looking at the vector fields (b) and (c) of figure (13)), for
which we lose uniqueness. In this case, we also have presence of the so called
transversal intersection, for which a trajectory passes from one side of the line S
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to the other. This happens for those points (x, y) ∈ S such that fN1 · fN2 > 0, that
is, the two vector field restrictions point to the same direction. Notice that the
uniqueness of the Filippov solution starting from these points is guaranteed by
means of theorem 3.5.

In particular, the following results hold:

Proposition 5.1.4 System (119) admits only repulsive solutions starting from the discon-
tinuity set S for 0 < ρ2 <

1
2 .

Proof To prove this statement we need to show that:

fN1 < 0 and fN2 > 0 ∀ (x, y) ∈ S, ρ2 <
1

2
(124)

If we call φ = ρ1x+ ρ2y− 1
2 , we notice that our discontinuity line is given by the equation

φ = 0. The two projections are given by the equations

fN1 =
∇φ · f1
|∇φ|

fN2 =
∇φ · f2
|∇φ|

(125)

From the above formula, after some algebra one finds:

fN1 =
−1− ρ2(−ρ2 + 2(−1+ ρ2)x)(3− 2ρ2 + 4(ρ2 − 1)x)2√

4+ 8(ρ2 − 1)ρ2
(126)

fN2 =
1− ρ2(2− ρ2 + 2(1− ρ2)x)(1− 2ρ2 + 4(1− ρ2)x)2√

4+ 8(1− ρ2)ρ2
(127)

A study of the above functions shows that fN1 < 0 and fN2 > 0 ∀ (x, y) ∈ S, 0 < ρ2 <
1
2

and the result is proven.

Proposition 5.1.5 System (119) admits transversal intersections for ρ2 > 1
2 .

Proof To prove this statement it is enough to exhibit a transversal intersection for every
ρ2 >

1
2 . In particular, we need to find a point belonging to the discontinuity set for which

the following holds:

fN1 f
N
2 > 0 for

1

2
< ρ2 < 1 (128)

For instance, we can evaluate projections (126) and (127) at x = 1 (the y coordinate will
be such that the point belongs to S.), we obtain:

fN1 f
N
2 =

(1− ρ2)2(−1+ ρ2(1+ 4(ρ2 − 2)ρ2)(1+ ρ2(1+ 4(ρ2 − 2)ρ2))

(4+ 8(ρ2 − 1)ρ2)
(129)

A quick study of the above function shows that fN1 f
N
2 > 0 1

2 < ρ2 < 1 and the result
is proven.
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To conclude, we can say that for every ρ2 ∈ (0, 1) the differential system (119)
admits a unique Filippov solution ∀ (x0, y0) /∈ S while the solution is in general
not unique for (x0, y0) ∈ S.

Stability analysis

We can start noticing that, at equilibrium, the first equation imposes: H((1−ρ2)x+
ρ2y − 1

2) = x. Since H can only be either 0, 1
2 or 1, this means that x can be either

0, 1
2 , or 11 as well. If we consider the case x = 0, the second equation becomes:

1− ρ22(3+ 2ρ2(y− 1))(y− 1)2 − y = 0 ⇐⇒



y = 1

y = 1−
3ρ22 +

√
ρ32(9ρ2 − 8)

4ρ32

y = 1−
3ρ22 −

√
ρ32(9ρ2 − 8)

4ρ32
(130)

We notice that the last two solutions exist if and only if ρ2 ≥ 8
9 . Now we get back

to the first equation, that evaluated for x = 0 becomes H(ρ2y − 1
2) = 0 ⇐⇒

ρ2y − 1
2 < 0. We have to check if this inequality is satisfied for the values of y

found in (130). By substituting, we see that y = 1 is actually a solution if and
only if ρ2 < 1

2 . By doing the same for the other two values of y, we see that the
inequality is always satisfied for ρ2 ≥ 8

9 , which is the range of existence of those
values.

The other case we have to consider is when x = 1. For this value, the second
equation is:

y(ρ22y(3− 2ρ2y)− 1) = 0 ⇐⇒



y = 0

y =
3ρ22 −

√
ρ32(9ρ2 − 8)

4ρ32

y =
3ρ22 +

√
ρ32(9ρ2 − 8)

4ρ32

(131)

As we could expect by symmetry reasons, we see that these solutions are just the
one-complementary of those found for x = 0 in (130). The first equation evaluated
for x = 1 gives H(1− ρ2+ ρ2y− 1

2) = 1 ⇐⇒ ρ2y− ρ2+ 1
2 > 0. The conclusions are
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the same as before: y = 0 is a solution for ρ2 < 1
2 and the other two are solutions

in their range of existence, ρ2 ≥ 8
9 .

Finally, we consider the case x = 1
2 . This means that the argument of the Heav-

iside function is 0, so it must be: (1−ρ2)
2 + ρ2y − 1

2 = 0 ⇒ y = 1
2 . By plugging

x = 1
2 and y = 1

2 into the second equation, we see that this is actually a solution
∀ ρ2 ∈ (0, 1).

Summing up our results, the system admits the following equilibria:

(xeq, yeq)I = (0, 1) (xeq, yeq)II = (1, 0) (xeq, yeq)C =

(
1

2
,
1

2

)
for ρ2 <

1

2

and

(xeq yeq)III =

0, 1−
3ρ22 +

√
ρ32(9ρ2 − 8)

4ρ32


(xeq yeq)IV =

0, 1−
3ρ22 −

√
ρ32(9ρ2 − 8)

4ρ32


(xeq yeq)V =

1,
3ρ22 +

√
ρ32(9ρ2 − 8)

4ρ32


(xeq yeq)VI =

1,
3ρ22 −

√
ρ32(9ρ2 − 8)

4ρ32


(xeq, yeq)C =

(
1

2
,
1

2

)
for ρ2 ≥

8

9

To complete the stability analysis we can check that all the equilibria that we
have found are asyntotically stable in their range of existence, apart from equi-
libria III and IV and the central equilibrium that we have called C. In particular,
keeping in mind that the partial derivatives of H are 0 almost everywhere, it is
immediate to see that, for equilibria I and II, the jacobian is given by:

JI = JII =

[
−1 0

0 −1

]
(132)

and we immediately see that the two eigenvalues are equal to −1, so equilibria I
and II are asintotically stable.

Lenghtly but easy calculations show that equilibria V and VI are stable as well
in their range of existence (ρ2 ≥ 8

9 ), while equilibria III and IV are unstable.
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We have some issues when we have to estabilish the stability condition of equi-
librium C. In that case infact, we cannot simply consider the jacobian of the sistem
evaluated in that point because the Heaviside function is not continuous in the ori-
gin and so we cannot take partial derivatives, at least in a classical sense.

However, one can check that the discontinuity line is always repulsive around
equilibrium C. This implies that we can always exhibit solutions starting arbitrarly
close to the equilibrium that do not satisfy the stability condition. Thus, equilib-
rium C is unstable for any value of ρ2 ∈ (0, 1).

From this analysis we can notice that there exists a range 1
2 < ρ2 <

8
9 in which

the system does not admit any stable equilibrium. Since we know that our domain
[0, 1]2 is an invariant set, if the differential system were continuous, by Poincae-
Bendixson theorem we could conlcude that a stable limit-cycle must have existed
in that range. Unfortunately, the presence of a discontinuity makes this argument
invalid as the Poincare-Bendixon theorem does not hold. However, by running
simulations we will see that a periodic orbit appears for ρ2 > 1

2 .

It is useful at this point to show how the vector field behaves for different values
of ρ2 (figure 19 to 21).
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Figure 19: Vector field of the model for ρ2 = 0.3. The blu line is the discontinuity set. We
can appreciate that for this value fo ρ2 the discontinuity set S is repulsive.
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Figure 20: Vector field of the model for ρ2 = 0.6. The blu line is the discontinuity set.
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Figure 21: Vector field of the model for ρ2 = 0.92. The blu line is the discontinuity set.



5.1 full majority model with asymmetric heterogeneous edges 79

In the following, we will simulate in MATLAB the dynamics of the system for
different values fo ρ2.
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Figure 22: Some trajectories of the model for ρ2 = 0.3 simulated in MATLAB. In black the
discontinuity set.
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Figure 23: A trajectory of the model for ρ2 = 0.6 simulated in MATLAB. We can notice
that a limit cycle appears. In red, we can see a sample path of the underlying
Markov process.
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Figure 24: Some trajectories of the model for ρ2 = 0.92 simulated in MATLAB. Two stable
equilibria appear and the limit cycle is still present.
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Figure 25: Some trajectories of the model for ρ2 = 0.92 simulated in MATLAB. In red, we
can see the corresponding sample paths of the Markov chain.

It is interesting to notice that the stable limit cycle exists even for ρ2 ≥ 8
9 , when

also the two stable equilibria appear (figure 24). From simulations we can also
see that the limit cycle shrinks as ρ2 increases, up to collapse in the limit case
ρ2 = 1. In particular, figure 24 shows that, for ρ2 ≥ 8

9 , the cycle appears like a
ellipsoid-shaped object with its “semi-major axis” perpendicular to axis y. This
means that, when we have a large majority of anti-social individuals, if they start
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from a very uncertain and chaotic condition (which means without a predominant
opinion among them), then they will bring the system to a periodic oscillation
describing the limit cycle, regardless of the social-individuals opinion; otherwise,
the population will reach one of the two equilibria, very close to consensus.

Dynamics of the full majority model with asymmetric heterogeneous edges

We can resume the dynamics of the model as follows:

• 0 < ρ2 ≤
1

2

In this case the system admits the two polarization points (0, 1) and (1, 0) as
stable equilibria. This means that a quasi-local consensus is reached within
each subpopulations.

• 1

2
< ρ2 ≤

8

9
In this case the system admits no stable equilibria and a limit cycle appears.
In this range, the opinions tend to oscillate in a periodic fashion.

• 8

9
< ρ2 < 1

In this case the stable equilibria V and VI appear and the stable limit cycle
is still present. Notice that equilibria V and VI are points close to the pure
configurations.

5.2 anti social behaviour dynamics on a star graph

In our study of hetherogeneous model, so far, we have only considered the mean-
field assumption, deriving our results working on complete graphs. In general,
it can be very hard to find exact results about the asymptotic behaviour of an
heterogeneous model taking place on a non-complete graph. However, in some
particular cases, it is possible to give some simple structure to the underlying
network without loosing the capability to carry out an analytic analysis of the
model.

Here we consider one of these “lucky cases”, where the network’s structure is
given by a star graph, like the one shown in the following picture.
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C

Figure 26: The star graph S8.

A star graph Sn is nothing but a particular tree and bipartite graph, which
consists of one central node, denoted by C, and a number n of periferic nodes
connected to it. This structure, although very simple, can be used for instance to
model social hierarchies, with the chief as the central node C and its subordinates
as the periferic nodes.

Let us now describe the dynamic of the model. We consider a generic star-graph
Sn and we split the n periferic nodes into two population as usual: V1 following a
voter dynamic and V2 following an anti-voter dynamic. Finally, the central node
C follows a 3-majority model.

We can derive a sort of hydrodynamic-limit model by considering a star-graph
with a large number of periferic nodes (in the limit, n→∞). Since we have a very
large amount of periferic nodes but still one central node, we need to assign a
certain probability to select whether C or one of the periferic nodes for an opinion
update at every discrete time step. In the following, we will denote by qc the
probability to pick up the central node for an update at each discrete time step
(obvioulsy, 1 − qc will be the probability to choose one of the periferic nodes).
Moreover, we call z(t) the probability that the central node is in state 1 at time t.

To begin with, the state of the node C at fixed instant of times t will be a
random variable with bernoulli distribution, as it can assume only value 0 or 1. In
particular, if we call such a variable C(t), we have that:

C(t) =

1 with probability z(t)

0 with probability 1− z(t)
(133)

where z(t) is the probability that C is in state 1 at time t, as already mentioned
before. Notice that the evolution in time of the state of C is described by a Markov
process defined by the family of bernoulli variables {Ct, t ∈ R+} with an initial
conditions C0. Notice also that the bernoulli variables are not independent nor
identically distributed.
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Finally, we can write a sort of hydrodynamic limit-model as two differential
equations coupled by the stochastic process Ct:

dx

dt
= q(Ct − x)

dy

dt
= q(1−Ct − y)

(134)

It is clear that in this case the model is not deterministic anymore. However, we
will see that the dynamics of the model are strongly affected by the value of qc:
More in details, when the probability to pick the node C qc and the complementary
probability to pick a periferic node are of the same order, then system (134) tends
to behave in a deterministic fashion.

The case: qc ∼ 1− qc

In this scenario we can approximate the value of the random variable C(t) at each
fixed instant of time with its expected value: E[C(t)] = z(t). The equation for
populations V1 can be written as:

dx

dt
= (1− qc)((1− x)z(t)q− x(1− z(t))q) (135)

where q is the copying probability. Doing the same for population V2 and simpli-
fying, we obtain that the model can be written as follows:

dx

dt
= q(1− qc)(z(t)− x)

dy

dt
= q(1− qc)(1− z(t)− y)

(136)

Now we need an equation describing the evolution of the probability z(t) involv-
ing the central node. It is rather simple to derive an equation for z(t) thinking in
terms of discrete time steps; we recall that the probability to find a majority of
ones among three nodes chosen at random from N nodes is given by:

m =
3∑
i=2

(N(ρ1x+ρ2y)
i )(1−N(ρ1x+ρ2y)

3−i )

(N3 )
(137)

Thus, by total probability theroem, the discrete-time equation for z(k), (with k ∈
N) can be written as follows:

z(k+ 1) = (1− qc)z(k) + qcm(k) (138)
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Here the first term on the right-hand side represents the probability of the event:
“C is in state 1 at time k and it is not selected for an update at time k + 1”; the
second term is simply the probability of the event: “C is selected at time k+ 1 and
finds a ones-majority selecting three random nodes”. The above equation can be
rewritten as:

z(k+ 1)− z(k) = qc(m(k)− z(k)) (139)

This is our master equation for z(k), which unfortunately has been derived in a
different time scale with respect to the differential equations (136). We can use the
same hydrodynamic-limit argument by changing the time scale accordingly. By
doing that, and multipling both sides by N , we obtain:

z(t+ 1
N )− z(t)
1
N

= Nqc(m(t)− z(t)) (140)

Now if we let N → +∞, the incremental ratio on the left-hand side will converge
to the derivative of z(t). We notice that there is an explicit dependence on N in
the right-hand side of the equation. Then, we may write the following differential
equation:

dz

dt
= Nqc(m(t)− z(t)) (141)

which approximates the discrete equation (138) in continuous time when N is
large. Coupling this equation with the system (136), the model can be approxi-
mated, for large N , by the following three-dimensional dynamical system:

dx

dt
= q(1− qc)(z − x)

dy

dt
= q(1− qc)(1− z − y)

dz

dt
= Nqc(3((1− ρ2)x+ ρ2y)

2(1− (1− ρ2)x− ρ2y) + ((1− ρ2)x+ ρ2y)
3 − z)

(142)
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The equilibria of the above system can be computed analitically and they do not
depend on the particular choise of qc; lenghtly calculations show the they are
given by:

(xeq, yeq, zeq)I =
(
1

2
,
1

2
,
1

2

)

(xeq, yeq, zeq)II =
(
1

2
−

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
+

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
−

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

)

(xeq, yeq, zeq)III =
(
1

2
+

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
−

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

,
1

2
+

√
6ρ2 − 1

2
√
(2ρ2 − 1)3

)
We can notice that these equilibria are exactly those of the majority-anti majority
model for what concerns the variables x and y. The two models behave in a very
similar way and indeed the stability analysis shows that a bifurcation occurs at
ρ2 =

1
6 even in this case, with equilibria II and III that are unstable for ρ< 1

6 , when
equilibrium I is stable, and become stable for ρ2 > 1

6 , when equilibrium I becomes
unstable. This similarity is not that surprising if we think about the structure of
the star graph: the voter-antivoter agents interact with each other only indirectly
through the central node C, which follows a 3-majority dynamic.

In the following, we show some trajectories of system (142) projected onto the
x, y plane, as well as the corresponding sample paths of the underlying Markov
process with qc = 0.6 and for different values of the parameter ρ2.
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Figure 27: In blue, some trajectories of the model projected on the x, y plane. In red the
corresponding sample paths of the markov chain, which considers N = 10000

agents, are shown. The values used are: ρ2 = 0.6, qc = 0.6, q = 0.7.
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Figure 28: In blue, two trajectories of the model projected on the x, y plane. In red the
corresponding sample paths of the markov chain, which considers N = 10000

agents, are shown. The values used are: ρ2 = 0.1, qc = 0.6, q = 0.7.
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we can appreciate how the determinist system (142) well approximates the dy-
namics of the underlying Markov process.

The case: qc = 1
N

If we choose qc = 1
N , the behaviour of the model changes drastically. Indeed, in

this case we pick up node C only once in a while (in a timespan of t = k ∗N it
will be choosen k times on avarage. Figure 29 shows a sample path of the markov
chain for this value of qc.
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Figure 29: In blue it is plotted a trajectory of the model projected on the x, y plane, con-
verging to equilibrium II; in red a sample path of the Markov chain starting
from the same initial condition. The values used are: ρ2 = 0.1, q = 0.7

From the previous figure we can see that the Markov chain behaves in a similar
manner . From the previous figure we can observe that the system oscillates be-
tween the two polarization states and this happens independetly on the value of
ρ2. Such dynamics makes perfectly sense if we think that the central node C will
be selected only once in a while and, conversely, the periferic nodes are chosen for
an update most of the time. This means that, if we start with the central node in a
certain state, say 1, then for a long time only the periferic nodes interact and the
system will approach a polarization state (voter in state 1, antivoter in 0). After
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some time, the node C will be selected and with a certain probability it will flip
its opinion; consequently, the system will go towards the other polarization state.

This kind of behaviour is not captured by the differential system (142). Indeed,
in this case we cannot simply substitute the random variable C(t) with its mean
value at time t and a determinist description of the process doesn not hold any-
more. Neverthless, one can still simulate the stochastic system (134), which holds
for any value of qc.

More in details, simulations can be easly performed by considering that the
node C can actually change its status only when it has been choosen for an up-
date at a certain time t. At each discrete time step, the node C is selected with
probability qc = 1

N . Hence, one can define a bernoulli variable for each discrete
time step Ak, such that it assumes value 1 with probability 1

N and value 0 with
probability 1− 1

N ; these variables are all i.i.d. Thus, we can count the number of
times that the node C is selected in a time t that scales with N . It is well know
that when N →∞, this counting process converges to a continuous time Poisson
process with rate λ = 1. Infact, we may notice that a unit of time t corresponds
to N discrete time steps, thus, the number of times that the central node will be
selected in such a unit of time is given by:

N∑
j=1

Aj ∼ B

(
N ,

1

N

)
(143)

and then

B

(
N ,

1

N

)
→ Poiss(1) for N →∞ (144)

One can then simulate first the epoch times of the Poisson process, which are
the instant of times when the node C is chosen for an update. Then, it is sufficient
to evaluate the probability that the node C assumes a certain status given that it
has been chosen at a certain epoch time tep, that is

C(t)|A =

1 with probability m(tep)

0 with probability 1−m(tep)
(145)

In the figure 30 we show a simulation of system (134). A sample path of the
underlying Markov chain is also plotted.
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Figure 30: Dynamics of the model when qc = 1
N . The values used are: ρ2 = 0.1, N =

10000, q = 0.7,C(0) = 1.

The intermediate cases

So far, we have investigated the dynamics of the model for two extreme cases:
when qc and 1− qc are of the same order and when qc = 1

N . It is interesting to
investigate also the intermediate cases, when qc ranges between these two values.
In order to explore these scenarios, we run simulations for different values of qc.
In the following, we consider a star graph SN where N = 10000.
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Figure 31: The values used are: ρ2 = 0.1, qc = 1/
√
N , q = 0.7.
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Figure 32: The values used are: ρ2 = 0.3, qc = 1/
√
N , q = 0.7.
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Figure 33: The values used are: ρ2 = 0.1, qc = 0.001, q = 0.7.

We can notice that the system faces a smooth phase transition as qc ranges
between the two limit cases. If we set qc = 1√

N
(figure 31 and 32), the sample

paths follow a pattern that resembles the one obtained when qc ∼ 1− qc. Indeed,
the system state is guided towards one of the stable equilibria of system (142),
and it stays around these points but with much larger swings. Notice that we still
have a bifurcation around ρ2 = 1

6 . As qc gets closer to the value 1
N (figure 33),

the oscillations around the equilibria become larger and larger, and the system
dynamic tends to be less deterministic, up to exhibit the oscillations between the
two polarization points as shown in figure 30.



E P I O L O G U E

The purpose of this work was to design and study heterogeneous models for opin-
ion dynamics. In the first part of this dissertation, we have described the stochastic
approach to model opinion dynamics and we have highlighted the main features
of it. At the same time, we have pointed out the importance of considering the fact
that people exhibit a stunning diversity and react in different ways even if esposed
to the same issues. In the second chapter, we have introduced the necessary math-
ematical background that we need in order to build and analyze heterogeneous
model.

The second part of this work was devoted to designing heterogeneous mod-
els by considering two heterogeneous subpopulation interacting each other. Most
of the time, we have considered the effect of anti social behaviours as perturba-
tions affecting the normal route to consensus of dynamics like the voter and the
majority laws. In particular, we have observed that several models of this kind
exhibit phase transitions for certain thresholds regarding the size of the anti social
subpopulation.

The analysis has been generalized by considering edge-based heterogeneous
models in chapter three. In these kind of models populations have awareness of
themselves, since they are able to recognize different people. In this context, we
have shown a model of full majority that can be modelled by means of a differen-
tial equation with discontinuous right-hand side. Despite the fact that the Kurt’s
theorem does not hold for such a model, our simulations show that the differential
system excellently approximates the dynamic of the underlying Markov chain and
suggest that there is room to generalize the theorem in order to take into account
even such irregular situations. Finally, we have designed a last model for which
we dropped the mean field assumption by modeling an anti social behaviour on a
star graph. A quasi-mean field description in terms of differential equations have
been developed for suitable values of a key parameter of the model.
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