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A B S T R A C T

In this dissertation, we consider a novel adversarial perturbation/protection prob-
lem for a class of network equilibria models emerging from a variety of different
fields such as continuous network games, production networks, and opinion dy-
namic models. Specifically, we consider min-max problems whereby an external
planner (the defender) aims at selecting the optimal network intervention within
her given budget constraint in order to minimize a system performance that an
adversary (the attacker) is instead trying to maximize. Problems are analytically
solved for three particular cases of aggregate performances: the sum of squares
of the equilibrium, the mean square or of its arithmetic mean. The main result
is on the shape of the solutions, typically exhibiting a water-filling type structure
with the optimal protection concentrated in a proper subset of the nodes, depend-
ing significantly on the aggregate performance considered. Our results also show
that the optimal intervention of the defender has different regimes depending on
the budget. For a large enough budget, the optimal intervention of the external
planner acts on all nodes proportionally to new notions of network centrality. For
lower budget values, such optimal intervention has a more delicate structure and
is rather concentrated on a few target individuals.
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1
I N T R O D U C T I O N

1.1 introduction and motivation

The study of the effects of exogenous perturbations entering into a system, prop-
agating and affecting its performance, and designing policies to mitigate them is
a longstanding problem in many contexts of applied mathematics and theoretical
engineering.

The growing field of multi-agent systems has opened new perspectives in this
direction bringing in, particularly in the case of financial and economic models,
the idea of idiosyncratic shocks [6, 23]. These are meant to be localized perturba-
tions acting on the various agents of the system that aggregating through their
interaction can possibly affect its macro evolution. The problem of understand-
ing the effect of such perturbations in a system is ubiquitous, crossing all appli-
cations dealing with infrastructure systems (e.g. transportation networks, sensor
and robotic networks [8, 22, 45, 55], electrical grids, financial and economic net-
works) but also of great interest in social network models [2, 4].

In the past decade, a conspicuous number of theoretical works in finance and
economics (partly pushed by the recent financial crisis) [1, 3, 20, 35] have studied
different instances of this problem, posing the fundamental questions of under-
standing the role of the network interconnections in propagating, aggregating and
possibly amplifying exogenous perturbations of the system and of individuating
the nodes most responsible for the spreading phenomenon. A key issue is that
even if the shocks are originally independent along with the various agents of the
system, their interaction will lead to correlations that will be the source of ampli-
fication effects. The extent of this phenomenon is expected to rely on the nature
of the interactions and the topology of the network (e.g. the presence of highly
connected nodes) [3, 5]. The concept of centrality, which scores the importance of
various nodes, plays a crucial role in understanding the paired effect of shocks
and network interactions [6, 26, 52]. In particular, it turns out that an economy is
capable of reducing the effect of idiosyncratic shocks at a macroscopic level if and
only if the network has no central hubs, i.e. nodes that are much more important
than others [3].

Related to theoretical works in finance and economics, a large body of literature
has focused on the impact of the social network structure on shaping the emer-
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2 introduction

gent opinion profile in society [43]. The possibility of interfering in the democratic
life of society in order to change the outcome of a political campaign or an elec-
tion, alter the balance of power on a social issue, and legitimate or delegitimate
a position is an unsettling concrete reality. Automatic programs, often referred to
as "bots", are increasingly used to manipulate debates in social networks, spread
fake news, and have become more sophisticated and harder to distinguish from
real people. Phenomena such as consensus, polarization, or persistent disagreement
have been studied in this context, as well as the role of targeted interventions in
shifting individuals’ opinions in the desired direction. Building on the Friedkin-
Johnsen [34] opinion dynamic model, an extension of the French-De Groot [28]
linear averaging model that admits exogenous inputs (e.g., stubborn nodes), var-
ious works in the recent past have studied the interaction between the network
structure and the effect of external influences and formulated targeting optimiza-
tion problems. In [56, 54], the problem of optimizing the position of a stubborn
agent to maximally offset the effect of other influencing agents has been investi-
gated. A corresponding adversarial problem formulated as a zero-sum game has
been proposed and analyzed in [30]. In all these target intervention problems, the
analysis leads to a specific concept of centrality: the most central nodes are those
where it is more convenient to exert the action.

Entering into the specific of this context, in this dissertation we focus on target-
ing intervention problems, that aim to determine the nodes in a network on which
the effect of an external action is maximum. The recognition of the central role
played by this typology of problems in the analysis of networks made them the
object of study in a variety of fields encompassing social and economic contexts.
In quadratic game theory, the work [7] coined the term key players to indicate
the players whose removal would affect the most aggregate performance of the
system. Furthermore, in the context of more general linear best reply games, a
different intervention aimed at changing the payoff function of prescribed players
has been discussed [29, 37, 51]. In the context of strategic pricing and market pow-
ers, the optimal pricing strategy of a monopolist among consumers embedded in
a social network has been studied in [21, 11, 14, 38].

Here, we propose and analyze an intervention problem formulated as an adver-
sarial min-max problem: the first player (the attacker) can manipulate exogenous
inputs that affect equilibrium points of the system, while the second player (the
defender) applies a defense action weakening the strength of action of the first
one (which, in mathematical terms translates into an in increase of the cost of the
attacker). Actions of the defender are driven by external constraints that allow
only particular and focused interventions on a proper subset of agents.

Emerging from the analysis are novel network centrality measures that indicate
the most influential inputs on which the defender should mainly intervene. We
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will show that the solution for the defender is to invest its mitigation resources
on as many nodes as possible according to the available budget: all of them if its
sufficiently high, otherwise on a subset. The nature of perturbations, which the
attacker manipulates, can further complicate the problem, making it much more
challenging to understand the best subset of nodes to intervene on.

Along with the dissertation, we propose some relevant applications in which the
adversarial problem is tailored to the specific features of the considered context.

1.2 organization of the dissertation

The thesis is organized as follows.

• Chapter 2 introduces useful concepts of graph theory and the related no-
tion of centrality, which are the basis for linear network systems and the
adversarial min-max problems treated in this dissertation. After introducing
some proper notations in Section 2.1, in Section 2.2, we present some basic
notions of graph theory, together with some relevant results on nonnegative
matrices. Then, in Section 2.3, we present the notion of network centrality, a
fundamental tool in the analysis of targeting intervention problems.

• In Chapter 3, we consider linear network models and important applications
of our results. Section 3.1 presents the benchmark linear network model that
describes the overall system’s functionality. The two main ingredients of the
model are the network, described by a nonnegative square matrix, and the
exogenous inputs vector, that describes how external sources could influence
the network. Three performance measures related to equilibrium configura-
tions are presented. Such relation appears in several socio-economic models,
such as the Nash equilibria of an underlying game or the asymptotic con-
figuration of a network dynamics model. In Section 3.2, we describe the
Friedkin-Johnsen opinion dynamic model [34], a fundamental extension of
the French-De Groot [28] linear averaging model, that admits the presence
of exogenous inputs (e.g., stubborn nodes). Then, in Section 3.3 we present
quadratic network games [18, 17, 44], where players strategically choose ac-
tions to maximize a quadratic utility function. Utility of each agent is a com-
bination of standalone action and actions of her neighbors in the networks.
We conclude the chapter with Section 3.4, describing production networks
and Cobb-Douglas model [6, 23]. In the economic literature, this model has
been widely used to describe the macroeconomic impact of idiosyncratic
shocks, i.e. localized shocks at agents level [1, 3, 9, 35].
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• Chapter 4 is devoted to present the adversarial min-max problem, the main
topic of the dissertation. Considerable attention has been recently devoted,
particularly in the economic literature, to the effects that a disturbance in
the input vector can have on the network equilibrium, in particular, how per-
turbation at the level of single agents can possibly be amplified by the net-
work interaction, and propagate to the other agents. We take a further step
in this direction and consider a more complex model, where disturbances
are complementary paired with protections, and we cast it into an adversar-
ial min-max problem. Then, Section 4.2 presents the essential mathematical
properties of both the optimization problem and the objective function. We
conclude this chapter with the solution to the inner maximization problem
in Section 4.3.

• In Chapter 5, we undertake the adversarial min-max optimization problem
under specific assumptions on the nature of exogenous perturbations. Sec-
tion 5.1 analyzes the minimization problem and shows its essential proper-
ties. We highlight the arising of different centrality measures related to per-
formances. Then, Section 5.2 presents the optimal intervention that solves
the aforementioned problem. Solutions to these optimization problems will
typically exhibit a ’water-filling’ structure with the optimal solution concen-
trated on a limited number of nodes. Section 5.3 is devoted to employing
our main result in applicative contexts. We will show two critical applica-
tions: the minimization of aggregate volatility and the minimization in the
Friedkin-Johnsen model when initial opinions are stochastic vectors.

• Chapter 6 presents the most important result of the dissertation. In this chap-
ter, we undertake a fundamental study of the adversarial min-max problem
removing any assumption on the matrix of exogenous inputs. In Section 6.1,
we introduce the min-max problem stating important general properties and
show that, depending on the performance measure, the problem changes
considerably. In Section 6.2, we study and solve the adversarial problem for
the first performance measure. We will show within this setting, the study
of the external minimization problem allows the use of similar tools used in
Section 5.2. Then, in Section 6.3, we study and solve the adversarial problem
for the second performance measure. The minimization problem considered
in this section is much more difficult respect to the previous case and could
be defined as an eigenvalues optimization problem. The main contribution
of this section is an explicit recursive solution of the min-max problem that
shows how the optimal solution for the defender is to invest its mitigation
resources on all nodes if her available budget is sufficiently high, or on just a
subset of nodes otherwise. We end this chapter with Section 6.4 by present-
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ing and studying the min-max problem for the third performance measure.
Also in this case the minimization problem should be defined in the class of
constrained eigenvalues optimization. This section shows a part of ongoing
research and examine particular cases of the problem.

• We wrap up the thesis with Chapter 7 where we summarize the main con-
tributions of this work as a whole in Section 7.1 and discuss possible exten-
sions and open problems that are object of current and future research in
Section 7.2.





2
B A C K G R O U N D

This first chapter introduces useful concepts of graph theory and the related no-
tion of centrality, which are the basis for understanding network systems in Chap-
ter 3 and the solutions to adversarial problems in Chapter 5, and Chapter 6.

After introducing some proper notations in Section 2.1, in Section 2.2, we present
some basic notions of graph theory, together with some relevant results on non-
negative matrices. Then, in Section 2.3, we present the notion of network centrality,
a fundamental tool in the analysis of targeting intervention problems.

2.1 notations

To begin with, we explain the basic notation to be used throughout this work.
We view all vectors as column vectors and we use x′ to denote the transpose of
a vector x ∈ Rn. The same holds for matrices. Given a vector x ∈ Rn, xS is the
restriction of x on the set of indices S = {1, 2, . . . ,n}. If S = {i}, we simply write
xi. Given a matrix M ∈ Rn×m, Mi ∈ Rn denotes the i-th column of M . Similarly
to vectors, MS represents the sub-matrix obtained from M by selecting columns
in the set S. We denote with Mij the (i, j) entry of matrix M . Given a vector
x ∈ Rn, [x] means a diagonal matrix having x on the components of x on the
main diagonal. We indicate with 1 the all-1 vector and with I the identity matrix,
regardless of their dimensions.

The symbols R+ and R++ denote the nonnegative and positive reals, respec-
tively. The symbols S+ and D+ denote the set of symmetric positive semi-definite
matrices and the set of nonnegative diagonal matrices, respectively. The order of
M ∈ S+ or ∈ D+ will be clear from the context. Given a vector x ∈ Rn, with
‖x‖, we denote the Euclidean norm. The entry-wise partial order is considered
on Rn, so that, the inequality x ≤ y for x, y ∈ Rn means that xi ≤ yi for every
i = 1, 2, . . . ,n. Throughout the dissertation, we consider the partial order defined
by the convex cone of positive semi-definite matrices: given two symmetric matri-
ces M ,K ∈ Rn×n, we say that M � K if K −M is positive semi-definite. With
M ≤ K we indicate that matrix K is entry-wise greater than M , i.e. Mij ≤ Kij for
every pair i, j = 1, 2, . . . ,n. Additional notations will be introduced throughout
this work and explained when needed.

7



8 background

2.2 notions of graph theory

A (weighted directed) graph G = (V , E ,W ) is a mathematical entity identified by an
ordered triple of objects:

• a set of N ∈N nodes, usually labeled by positive integers numbers, grouped
in the node set V = {1, 2, . . . ,N};

• a set of ordered pairs of nodes (i, j) with i, j ∈ V , named edges, which are
collected in the edge set E = V ×V ;

• a weight matrix W ∈ RV×V+ that has the property that Wij > 0 if and only if
there exists the edge from node i to node j, i.e. Wij > 0 ⇐⇒ (i, j) ∈ E .
This also means that we can associate a weighted directed graph GW to
any square matrix W ∈ RN×N

+ with node set V = {1, 2, . . . ,N}, edge set
E = {(i, j) ∈ V ×V : Wij > 0} and weights defined by W .

The presence of a specific edge (i, j) has to be interpreted as a direct connection
from node i to node j and the associated weight Wij measures the strength of the
connection. Depending on the context, the presence of edge (i, j) may have differ-
ent interpretations: it may indicate that node i influences node j, or, conversely,
that i observes j, in the sense that i has access to the state of node j and get influ-
enced by it. We shall refer to edges (i, i) whose head node coincides with its tail
node as self-loops.

In certain applications, edges have an intrinsic bilateral meaning (e.g. symmet-
ric interactions, human relations, partnership). This corresponds to the situation
where the two edges (i, j) and (j, i) either belong to E and have the same weight
Wij = Wji > 0, or are both absent. Graphs with this property are called undirected.
We notice that if G is undirected, then its weight matrix W = W ′ is symmetric.

If Wij ∈ {0, 1} for all i, j ∈ V , the graph is called unweighted. The matrix W is
called, in this case, adjacency matrix. If G is unweighted, it is often described by
the pair G = (V , E). If a graph G is unweighted, undirected, and does not contain
self-loops, i.e. Wii = 0, it is called simple.

We introduce other useful notions related to the graph G = (V , E ,W ).

• The out-neighborhood and the in-neighborhood of a node i ∈ V are, respectively,
the sets

Ni = {j ∈ V : (i, j) ∈ E}, N−i = {j ∈ V : (j, i) ∈ E} .
Nodes in Ni and N−i are referred to, respectively, as out-neighbors and in-
neighbors of node i in G. Nodes with no out-neighbors other than possibly
themselves are called sinks, while nodes with no in-neighbors other than
possibly themselves are called sources.
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• The out-degree and in-degree of a node i ∈ V are defined, respectively, as

wi =
∑
j∈Ni

Wij , w−i =
∑
j∈N−i

Wji .

Often we will use the shorter term degree for out-degree and the compact
notation

w = W1, w− = W ′1 .

• G is called regular if all its nodes have the same degree, i.e., if w = w− = 1
n .

Notice that in undirected graphs, there is no distinction between out- and in-
neighbors, out- and in-neighborhoods, and out- and in-degree.

We conclude this section by presenting some relevant examples of graphs we
will use in the rest of this dissertation. When referring generically to a graph,
we will implicitly intend it to be weighted and directed, unless it is otherwise
specified or clear from the context.

Example. (Complete graph). A complete graph KN is a simple graph of N nodes
each connected to every other node. We notice that for all i ∈ V , Ni = V\{i} and
di = N − 1. Hence, complete graph is regular. An example of complete graph is
presented in Figure 1-(a).

Example. (Path graph). A path graph PN with N nodes is a simple graph where
the edge set is defined as E = {(i, i+ 1), (i+ 1, i), i = 1, . . . ,N − 1}. Path graph
is thus undirected but not regular. An example of path graph is presented in
Figure 1-(b).

Example. (Ring graph). A ring graph CN is a simple graph of N nodes all of
which have degree 2. We notice that CN is derived by a path graph adding the
undirected edge that connects node 1 to node N . By definition, ring graph is
regular. An example of ring graph is presented in Figure 1-(c).

Example. (Star graph). A star graph SN with N nodes is a simple graph where
the edge set is defined as E = {(1, i), (i, 1), i = 2, . . . ,N − 1} , where the index 1

represents the central node. Simple star graph is thus undirected but not regular:
all nodes but node 1 have degree 1, while node 1 has degree N − 1. An example
of star graph is presented in Figure 1-(d).
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(a) Complete graph. (b) Path graph. (c) Ring graph. (d) Star graph.

Figure 1: Relevant graph topologies presented in the examples of this section.

2.2.1 Reachability and connected components

Let G = (V , E ,W ) be a graph. We introduce the following important definitions:

• A walk from node i to node j is a finite sequence of nodes γ = (γ0, γ1, . . . , γl)
such that γ0 = i, γl = j, and (γh−1, γh) ∈ E for all h = 1, . . . , l, i.e., there is a
link between every two consecutive nodes. Here, l is called the length of the
walk. By convention, we consider walks of length 0 as going from a node to
itself;

• A walk γ = (γ0, γ1, . . . , γl) such that γh 6= γk for all 0 ≤ h < k ≤ l, except for
possibly γ0 = γl, is called a path. In plain words, a path is a walk that does
not pass through a previously visited node except possibly for ending in its
start node;

• A node j is said to be reachable from a node i if there exists a walk from i to
j;

• A graph G is called strongly connected if given any two nodes i and j, we have
that i is reachable from j;

• Given a subset of nodes S ⊆ V , we say that S is globally reachable (in G) if S
is strongly connected and for every j /∈ S there exists a walk in G from j to
some i ∈ S.

The analysis of the connectedness of a graph can be further refined by con-
sidering the so called connected components of G that are the maximal subsets
V1,V2, . . . ,Vk of the node set V such that, for every two nodes i and j in the
same component Vh, there exists a path from i to j. In other words, that means
that the sub-graph associated to such a component is strongly connected. Note
that the size of a connected component may range from 1 (in case there exists a
node i such that there exists no other node j 6= i such that both j is reachable
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Figure 2: A graph with 10 nodes and 4 connected components. Notice that V1 is a globally
reachable set.

from i and vice versa) to N (when the graph is strongly connected). The splitting
in connected components constitutes a partition of the node set V , i.e., one has
that

V = V1 ∪ V2 ∪ . . .∪ Vk, Vh ∩ Vl = ∅, h 6= l .

In Figure 2 we show a graph consisting of 9 nodes and 4 connected components.
The connected component V1 is a globally reachable set and it is a sink in graph
terminology. Intuitively, if we one starts moving at random from node to node
according to the links present in the graph, it will eventually "fall" in V1 and
unable to get back to any of the other components.

2.2.2 Algebraic graph theory

One of the key achievements of modern graph theory is the exploitation of the
role of matrices and the fact that many graph properties admit an equivalent
linear algebraic version. This section introduces some of these notions that will be
useful later on.

Given a graph G = (V , E ,W ), the first most natural matrix associated to it is
of course the weight matrix W itself. The powers of W contain interesting infor-
mation on the walks over G, as shown below. First, let us define the weight of a
length-l walk γ = (γ0, γ1, . . . , γl) as the product of its l edge weights

Wγ =
∏

1≤h≤l
Wγhγh−1 ,

with the convention that length-0 walks have unitary weights. The following prop-
erty states that the (i, j)-th entry of the matrix power W l coincides with the sum
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of the weights of length-l walks from i to j and gives two important consequences
of this fact.

Proposition 1. Let G = (V , E ,W ) be a graph. Then, for every l ≥ 0 and i, j ∈ V ,

(i)
(
W l
)
ij
=

∑
γ length−l walk

from i to j

Wγ ;

(ii) (W l)ij > 0 if and only if exists a walk of length l from i to j;

(iii) G is strongly connected if and only if for every i, j ∈ V , there exists l such that
(W l)ij > 0.

In the special case of unweighted graph G all edges have unitary weight. There-
fore, (W l)ij coincides with the number of length-l walks from i to j.

Besides its weight/adjacency matrix, one matrix commonly associated to a
graph G = (V , E ,W ) turns out to be particularly relevant later on: the normal-
ized weighted matrix P . In order to define P we shall assume that all nodes have
positive out-degree, i.e. wi > 0 for all i ∈ V . This causes no real loss of generality
since, if wi = 0 for some node i, we can always modify G by adding a self-loop on
i of some positive weight Wii. Then,

P = [w]−1W , [w] = diag(w) . (2.1)

Notice that all entries of P are non-negative: matrices with this property are
simply referred to as non-negative. Moreover, by the definition of P it follows that

P1 ≤ 1 . (2.2)

equation Nonnegative square matrices satisfying property (2.2) are referred to as
sub-stochastic matrices. In plain words, a non-negative matrix is sub-stochastic if
the sum of the entries in each row never exceeds 1.

Notice that in the literature it is often assumed that sub-stochastic matrices have
the additional property that for at least one row there is strict inequality. Here we
prefer not to follow this convention and in this way our class of sub-stochastic
matrices contains also matrices P for which wi > 0 for all i ∈ V and, hence,
satisfying:

P1 = 1 . (2.3)

Nonnegative square matrices satisfying property (2.3) are also referred to as stochas-
tic matrices.

In the following, we will denote the spectral radius of a matrix P , i.e., the largest
absolute value of its eigenvalues, with the notation ρ(P ).
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The structure of the normalized weight matrix P is also linked to the connected-
ness properties of the associated directed graph GP . In fact, a non-negative square
matrix P is said to be irreducible if for every i and j, there exists l ≥ 1 such that(
P l
)
ij
> 0. Equivalently, P is irreducible if and only if the associated graph GP is

strongly connected.
Finally, we present the theorem of Perron-Frobenius gathering known important

results about non-negative matrices that can be found, e.g., in the monograph [10].
In the following, we will denote the spectral radius of a matrix P , i.e., the largest
absolute value of its eigenvalues, with the notation ρ(P ).

Theorem 2.2.1 (Perron-Frobenius). Let P in RN×N
+ be a nonnegative square matrix.

Then, the spectral radius ρ(P ) is an eigenvalue of P and there exists nonnegative vectors
x 6= 0 and y 6= 0 such that

(i) Px = ρ(P )x, P ′y = ρ(P )y. Such vectors are called, respectively, a right and a
left dominant eigenvector of P ;

(ii) every eigenvalue µ of P is such that |µ| ≤ ρ(P ).

Moreover, if P is irreducible or positive, then

(iii) ρ(P ) is simple;

(iv) the dominant eigenvectors x and y are unique up to normalization and have all
positive entries. y is also referred as to the eigenvector centrality of the graph and
also as to the invariant probability vector of the graph (when it is normalized such
that 1′y = 1).

2.3 network centrality

We now want to study measures that capture the importance of a node’s position
in a graph G = (V , E ,W ). These are referred to as centrality measures, and vast
literature exists on them [13]. We will not be exhaustive here but rather focus on a
few key concepts naturally connected to the intervention problems we will study
in the following chapters.

The simplest notion of centrality is the one of degree centrality whereby the im-
portance of a node i is simply by its degree. Of course, in non-balanced networks
one should decide whether the in-degree w−i (number of links pointing to node i)
or the out-degree (number of links originating from node i) is to be used.

Measures of centrality differ depending on the types of statistics on which they
are based, for example, degree centrality or closeness centrality. We will focus
only on neighborhood centrality, which determines the importance of a node as
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a function of its neighbors’ importance. This concept goes beyond the number of
neighbors and accounts for the fact that a node is more central if it is connected
with other important nodes.

A natural extension of the (in-)degree centrality is the eigenvector centrality.
The key idea is that connections from other nodes with high centrality should
contribute more to the centrality of a node than connections from nodes with low
centrality. Formally, we would like the centrality πi of node i to be proportional
to the sum of the centralities of the in-neighbors j of i, irrespective of their out-
degree, i.e.

πi ∝
∑
j

Wji

wj
πj .

This corresponds to replacing the adjacency matrix W with its normalized ver-
sion, the stochastic matrix P = [w]−1W , and leads, considering that the dominant
eigenvalue for P is 1, to the equation

π = P ′π . (2.4)

If G is strongly connected, matrix P results irreducible and therefore π results
the nonnegative dominant left eigenvector of P . If we admit the normalization
π′1 = 1, then π is unique and called the eigenvector centrality of G.

Nodes can increase the eigenvector centrality of a given node arbitrarily by
adding a self-loop on this node of a very large weight. In the limit, as the weight
of a self-loop grows large, the ratio between the centrality of this node and the total
centrality of all other nodes grows unbounded, even without losing connectivity.
Even if self-loops are not allowed, one can easily take two nodes and add an
undirected link between them of larger and larger weight: in the limit, as the
weight of this undirected link grows large, the ratio between the sum of the two
nodes’ centralities and the centralities of all other nodes grows to infinity. This
drawback is overcome by modifying the notion of centrality by allowing nodes to
get some centrality, independently of their in-neighbors. Formally, let us choose
some parameter λ ∈ (0, 1], and a nonnegative vector µ to be thought of as some
intrinsic centrality. The standard choice is µ = 1 so that all nodes have identical
intrinsic centrality. Then, we can define the Katz centrality vector [46, 15] (also
called PageRank centrality [40]) as the solution π of

π = λP ′π+ (1− λ)µ . (2.5)

Observe that the dominant eigenvalue of λP ′ is equal to λ, so that (I − λP ′) is
invertible. Using the expansion of the geometric series, the Katz centrality vector
can be expressed as

π = (1− λ)
∑
k≥0

λk(P ′)kµ = (1− λ)µ+ (1− λ)λP ′µ+ (1− λ)λ2(P ′)2µ . (2.6)
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Equation (2.6) shows how the Katz centrality πi of a node i can be expressed as
a convex combination of its own a priori centrality µi and of the terms (µ′P ′)ki
that depend on the centralities of the other nodes within distance k from i. The
form of the corresponding weight coefficients λ(1− λ)k show that the way nodes
influence the determination of the Katz centrality πi of a node i, is exponentially
decreasing with respect to the distance.

The next table helps to better figure out all the four centrality presented in this
section.

in-degree out-degree eigenvector Katz

π = w− π = w π = P ′π π = λP ′π+ (1− λ)µ

Table 1: Resuming table of all centrality presented in this section: in-degree, out-degree,
eigenvector (2.4), and Katz (2.5) centrality.

We conclude this section by presenting the calculation of Katz centrality for two
classes of graphs presented in Section 2.2 and a small directed network. In order to
keep the notation and the presentation simple, we shall assume that the intrinsic
centrality vector µ is equal between nodes, i.e. µ = 1. Thus, Katz centrality results

π = (1− λ)
(
I − λP ′

)−1
1 .

Moreover, we assume the normalization constraint 1′π = 1.

Example. (Regular graphs). We recall that a simple regular graph satisfy w =
α1, α > 0. For example, KN and CN belong to the class of simple regular graphs.
In this case, the matrix P results symmetric and therefore P ′1 = 1. Matrices that
satisfy the conditions P1 = 1,P ′1 = 1 are referred to as doubly-stochastic matrices.
Given that a matrix P associated to a simple regular graph is symmetric and
stochastic, it results doubly-stochastic.

If P is doubly-stochastic, then also (1− λ) (I − λP ′)−1 results doubly-stochastic.
Therefore, if G is a simple regular graph it results that

π = N−11 .

Example. (Star graph). Consider the simple star graph SN with N nodes. We
denote with the subscript 1 the hub and with j any other marginal node. For
symmetry reasons, Katz centrality π solves the following system of two equations{

π1 − (N − 1)λπj = (1− λ)
πj − λπ1/(N − 1) = (1− λ) .
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Then, the normalized version of π results

π1 =
1+ (N − 1)λ

N(1+ λ)
, πj =

(N − 1) + λ

N(N − 1)(1+ λ)
.

Keeping λ fixed and increasing the network size by augmenting the number of
leafs, i.e. making N → +∞, Katz centrality results

lim
N→+∞

π1 =
λ

(1+ λ)
, lim

N→+∞
πj = 0 .

This result implies that the importance of leafs reduces to zero while the impor-
tance of the hub remains notable.

1

2

3 4 5

Figure 3: Directed network with N = 5

nodes.

i w− w πe π

1 2 1 0.26 0.23

2 2 1 0.2 0.19

3 1 1 0.26 0.21

4 2 3 0.2 0.22

5 1 1 0.06 0.14

Table 2: Centrality w−,w,πe, and π re-
lated to directed network of Fig-
ure 3.

Example. (Directed network). Consider the directed network of N = 5 nodes
depicted in Figure 3.

In this illustrative example, we want to show the difference between the differ-
ent centrality measures presented in this section. In particular, we compare in and
out-degree, eigenvector centrality, and Katz centrality.

Starting from the adjacency matrix W , we calculate matrix P as defined in (2.1).
Given that the graph is strongly connected, matrix P is irreducible so that we
could calculate the unique eigenvector centrality. Setting λ = 1/2, we could then
calculate the Katz centrality using (2.5). Columns of Table 2 show in-degree w−,
out-degree w, eigenvector centrality πe, and Katz centrality π, respectively. Both
centrality πe and π are normalized to sum up to one. It is essential to notice that
nodes’ ranking is different depending on the centrality. For example, node 1 is the
most important node concerning Katz centrality but is equally important to node
3 with respect to eigenvector centrality.
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E Q U I L I B R I U M I N N E T W O R K S Y S T E M S

This chapter presents the general linear network model that describes the bench-
mark of many applicative contexts. Then, we present the three most important
applications of our study.

In Section 3.1, we start by presenting the linear network model that describes the
overall system’s functionality. Many different network models lead to equilibria
configuration describable in form

x = (I −A)−1Bu ,

where A ∈ Rn×n is a matrix having spectral radius less than 1, B ∈ Rn×m
+ is a

nonnegative matrix, u ∈ Rm is a vector of inputs that can be exposed to external
perturbations, and the vector x ∈ Rn is the system equilibrium configuration.
This is the reduced-form representation of various structural models and appear
in several socio-economic models, such as the Nash equilibria of an underlying
game or the asymptotic configuration of a network dynamics model. Then, we
introduce quadratic performance measures of the equilibria configurations that
evaluate the system as a whole.

In Section 3.2 we describe the Friedkin-Johnsen opinion dynamic model [34], a
fundamental extension of the French-De Groot linear averaging model [28], that
admits the presence of exogenous inputs (e.g., stubborn nodes). In recent years,
this model has been used to investigate phenomena such as polarization of social
opinions, disagreement, and absolute displacement and their mitigation through
interventions [25, 36, 39, 48].

Then in Section 3.3, we present quadratic network games [18, 17, 44]. In quadratic
network games, players strategically choose actions to maximize a quadratic util-
ity function. The utility of each agent is a combination of standalone action and
actions of her neighbors in the networks. In most of the works, the presence of
an external planner is considered. The goal of the external planner, which could
or could not have full information, is to intervene on the network to optimize an
aggregate performance, e.g., total welfare [12, 19, 29, 37, 38, 52].

We conclude this chapter with Section 3.4, describing production networks and
Cobb-Douglas model [6, 23]. In the economic literature, this model has been
widely used to describe the macroeconomic impact of idiosyncratic shocks, i.e.
localized shocks at agents level [1, 3, 9, 35]. The main result of these works is that

17
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aggregate volatility, a measure that describes fluctuations at an aggregate level, is
strictly connected to network topology through the vector of Katz centrality.

3.1 network equilibrium

We consider a set of n (regular) agents R = {1, 2, . . . ,n} interacting through a
directed graph G = (R, E). The strength of the interactions is determined by a
matrix A ∈ Rn×n

+ . We assume that Aij > 0 if and only if (i, j) ∈ E .
The system is also composed of a set of exogenous sources S = {n + 1,n +

2, . . . ,n+m} that inject an input value u ∈ Rm. Each agent i ∈ R is stimulated by
a subset of exogenous values uS′ ,S ′ ⊆ S. The strength of the influences of sources
on regular agents is determined by a matrix B ∈ Rn×m

+ .
The functionality of the overall system is described by a vector x ∈ Rn whose

components describe the level of activity (state) of the regular agents and satisfies
the following balance equation

xi =
∑
j∈R

Aijxj +
∑
s∈S

Bisus, i ∈ R . (3.1)

Here Aij ∈ R+ expresses the strength of influence of agent j on agent i, Bis > 0

expresses the strength of influence of source s on agent i, and us is the value
injected by source s. In this case, relation (3.1) states that the state of each agent
is a linear combination of its neighbors state and of exogenous inputs, where the
weights are given by the rows of the network matrix A and the values B. We may
then interpret the matrix

G =

(
A B

0 I

)
as the weighted adjacency matrix of a directed graph G = (V , E) with node set
V = R∪S and link set E = {(i, j) | Gij > 0}. We notice that, in this graph, sources
have no outgoing links (they are sinks in the graph terminology). A link from a
regular agent i to a source k indicates a direct positive influence exerted by the
exogenous source k on agent i. Instead, a walk from a regular agent i to a source
k indicates an indirect influence mediated by other regular agents.

Figure 4 shows a network composed by two regular agents R = {R1,R2} and
two exogenous sources S = {S3,S4}. We have represented regular agents with
circle and exogenous sources with rectangle in order to highlight the difference
between this two type of nodes. Exogenous values u1 and u2 enter into the sys-
tem through sources S3 and S4 and propagate to regular nodes R1 and R2 with
strengths described by the matrix B ∈ R2×2.
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R1 R2

A12

A11

A21

A22

S3 S4

B13

B14

B24

B23

u1 u2

Figure 4: Example of a network composed by two regular agents R = {1, 2} and two
exogenous sources S = {3, 4}.

We shall see in following sections that relation (3.1) appears in different con-
texts: it describes the asymptotic opinion in the Friedkin-Johnsen opinion dynam-
ics model, the Nash equilibrium of games with linear best-reply, or the output
equilibrium in Cobb-Douglas production networks.

Throughout the dissertation we shall work under the following assumption.

Assumption 1. The matrix A has spectral radius ρ(A) < 1.

In all the applicative contexts presented in the following sections, the model
described by (3.1) is studied under this assumption. This, in particular, implies
that the solution to (3.1) exists and is unique.

The spectral assumption allows to rewrite the balance equation (3.1) as

x = Mu, M = (I −A)−1B . (3.2)

Such x is called the equilibrium configuration of the system. In many applica-
tions, it is natural to assume that the weights are normalized so that

∑
j Aij +∑

sBis = 1 for every agent i. We notice that for a sub-stochastic matrix, the spec-
tral radius condition can be easily checked at the graph topology level. Indeed,
if we indicate with Ro the subset of agents i for which

∑
j Aij < 1, we have that

ρ(A) < 1 if and only if Ro is reachable from any node in the graph G.
This condition is clearly satisfied when Ro = R, namely when exists Bis > 0 for

every regular agent i ∈ R in the network. Notice that Assumption 1 allows one to
express the matrix M as the limit of the matrix series

M =
+∞∑
k=0

AkB . (3.3)
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Observe that the series (3.3) admits a characterization in view of Proposition 1.
Assuming B = I , A could be considered as the weighted matrix of a graph GA.
Then, Mij =

∑
k≥0(A

k)ij accounts for all the weighted walks from i to j of any
length k, and describes the total influence that agents j has on agent i.

Significant attention has been recently devoted to how a modification in u can
affect the solution x, described by (3.2), particularly in the economic literature
[37, 38]. In some cases, this has been formalized as a targeting intervention problem
where a planner looks for the optimal u (within a neighborhood of a reference
value u0) that maximizes some norm of x (e.g. total welfare). In other works,
instead, u is considered as a compensation. The analysis aims at understanding its
effects on the network equilibrium, in particular the role of the network topology
in creating correlations and thus possible amplification of such shocks.

In line with past literature, we consider three basic performance measures
formally presented as quadratic functions of the equilibrium state of the sys-
tem x. Given that the system equilibrium depends on the exogenous inputs, we
could represent these performance measures as function of u ∈ Rm. Defining
J := n−111′, we now present the performance measures considered in this disser-
tation.

• The first measure is the square of the average of the system equilibrium de-
noted by Γ. This measure is a widely used performance to identify the central
tendency of agents’ state. By letting x̄ := n−11′x, Γ : Rn → R is defined as

Γ(u) := (x̄)2 = n−1u′M ′JMu . (3.4)

In some applications, xi represents the action of agent i and 1′x expresses
the total activity of the system.

• The average of the agents’ state does not capture all the information on the
system. The second measure that we will consider in this dissertation is the
magnitude of the system equilibrium, formally expressed as the norm of the
vector x, defined by Φ : Rn → R and defined as

Φ(u) := ‖x‖2 = u′M ′Mu . (3.5)

• The last measure that we will analyze is the global distance from the average of
the system equilibrium denoted by Ψ. This measures captures how agents’
state are different respect to the average value x̄. Formally, we define Ψ :
Rn → R as

Ψ(u) := ‖x− 1x̄‖2 = u′M ′(I − J)Mu . (3.6)

In statistics, the global distance from the average correspond to the population
variance, a measure that tells how data of a population are spread out.
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The role of all these measures will be more clear in the following sections where
we present applications in which they are used.

Remark. We observe that all the three performance measures (3.4), (3.5), and (3.6)
could be presented in an unified way. Formally, for Y ∈ Rn×n, we define the
function FY : Rm → R as

FY (u) = u′M ′YMu . (3.7)

In particular:

• if Y = n−1J , then FY = Γ;

• if Y = I , then FY = Φ;

• if Y = I − J , then FY = Ψ.

We notice that, using properties of the trace, we can also write FY in the form

FY (u) = Tr
(
uu′M ′YM

)
. (3.8)

In the following chapters we will mostly represents FY using this last formula.

Remark. These three performance measures are interlinked by the following con-
servation law

Φ(u) = Ψ(u) + n Γ(u) , (3.9)

that expresses the magnitude of the system as the sum of an equating term, the
average, and a dissociating term, the global distance from the average, among
agents’ state. Augmenting the magnitude keeping fixed the average results in an
increase in the difference between agents’ state.

The natural extension of this model is to consider a stochastic vector u. Partic-
ularly in the economic and financial applications, the random vector u models
idiosyncratic shocks, i.e. shocks that are independent among agents. In other con-
texts, such as quadratic games, assuming a distribution on u helps to model un-
certainty or incomplete information for an external planner that wishes to modify
a system performance.

Assume u a stochastic vector with mean E[u] = 01 and covariance matrix E[uu′].
In this dissertation, we also consider the expected value of the three performances
presented before.

Remark. By the linearity of the expected value and the trace, we could write the
conservation law of performance measures’ expected value as

E[Φ(u)] = E[Ψ(u)] + nE[Γ(u)] . (3.10)



22 equilibrium in network systems

This equivalence states that the total variation in the equilibrium state x, the ex-
pected value of Φ, is the sum of the variance of the average, the expected value of
Γ, and the variance of the deviation from the average, the expected value of Ψ.

In the following sections, we present three interesting applications that exhibit
the equilibrium configuration (3.2) and interpret the performance measures tai-
lored to the specific context.

3.2 friedkin-johnsen opinion dynamics

Consider a system made of a set of n agents V = {1, 2, . . . ,n} interacting through
a directed graph G = (V , E ,W ).

The Friedkin-Johnsen model [34] in opinion dynamics can be described by

x(t+ 1) = [λ]Px(t) + (I − [λ])u , (3.11)

where P ∈ Rn×n
+ is a stochastic nonnegative matrix representing interpersonal

influences between agents and [λ], λ = (λ1,λ2, . . . ,λn), λi ∈ [0, 1] for all i, is
diagonal matrix of parameters that weight the role of network interactions. The
vector x(t) ∈ Rn collects the opinion that a set of agents hold on certain fact at
time t. In this context, input ui is referred to as the anchor of agent i and is typically
taken to be the original belief of the agent, namely u = x(0). Notice that [λ]ii = λi
indicates how much agent i is attached to its original belief and is thus resilient
to the network interaction. Then, x(t+ 1) results a convex combination of starting
opinions and network effects.

If the set of nodes S = {i ∈ V |λi > 0} is globally reachable, it can be shown that
[λ]P has spectral radius less than 1 and the Friedkin-Johnsen dynamic converges
to the globally stable equilibrium x given by formula (3.2) with A = [λ]P and
B = I − [λ] and u equal to the vector of initial opinions x(0)

Notice that, in contrast with the French-DeGroot model, although the asymp-
totic opinion is a convex combination of initial opinions u = x(0), the consensus
α1,α ≥ 0, is in general not reached.

In this context, it is interesting to consider performance measures that describes
how far the asymptotic opinion (3.11) is from the consensus. Specifically, (3.5) coin-
cides with global displacement ‖x‖2 and represents a measure of the distance from
consensus configuration at 0. Whereas, (3.6) coincides with polarization ‖x− x̄1‖2
and measures how far the asymptotic configuration is from the average opinion
x̄. The conservation law (3.9) tells us that the global displacement is made by
the polarization term and the average consensus of the asymptotic configuration,
described by (3.4). Therefore, the problem of reducing the global displacement
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should be addressed by shifting the average asymptotic opinion to 0 or by reduc-
ing difference in the final configuration, i.e. reducing the polarization.

Connected to the Friedkin-Johnsen dynamics there is also a learning interpre-
tation of the model. Assume that u = ū+ ηi, where ū ∈ R is the true value of
a certain quantity and ηi are independent random variables with mean 0 and
variances σ2i . Notice that, if no external perturbation is present, Friedkin-Johnsen
dynamics leads convergence of all agents to the consensus value x = ū1. In this
context, E[‖x‖2] represents a measure of the global displacement from such con-
sensus configuration, while E[(n−11′x)2] measures how far the arithmetic mean
of the asymptotic configuration is from ū. This last indicator is the crucial one to
study how interaction may affect the so called wisdom of crowd. stable.

3.3 quadratic games

Consider a quadratic game among a set of players V = {1, 2, . . . ,n} where utilities
have the form

Ui(x) = uixi −
1

2
x2i + β

∑
j∈V

Wijxixj . (3.12)

where the ui’s and β are positive constants and the elements Wij are nonnega-
tive. The benefits from increasing the action xi ∈ R depends both on i’s own
action xi and on others’ actions. The first two terms of (3.12) give the benefits
and the costs to player i of providing the action level xi, respectively. The coeffi-
cients ui ∈ R model the exogenous heterogeneity of agent i and are thus called
standalone marginal returns and represents incentives of agent i in taking action xi.
The parameter β > 0 captures the facts that actions are strategic complements, i.e.,
each agents benefit from a positive action of other adjacents agents. The last term
reflects the vantage of cooperation of i with his friends (those j for which Wij > 0).
Weights Wij ≥ 0 measure the strength of interaction between agent i and agent j.
In general, it is assumed that interactions are symmetric, that is, Wij = Wji for all
i, j ∈ V . Weights could be embedded in the matrix W ∈ Rn×n

+ that represents an
undirected weighted network.

If the spectral radius of matrix βW is less than 1, the game has just one Nash
equilibrium given by formula (3.2) with A = βW and B = I .

There are several social measures that are useful in this case. Social welfare, that
coincides with Φ, is defined as the sum of the equilibrium utilities ‖x‖2 and de-
scribes the wellness of a system. Consider, for example, a class of agents where ui
represents the incentives to study of agent i. Then, the total welfare reveals the to-
tal utility of the class, that is not only the sum of single players’ incentives to study
but also accounts for relations within the class. In this context of social activities,
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the social disparity ‖(I − J)x‖2, described in our theory by Ψ, could be an useful
index to detect difference in agents’ actions at the equilibrium. It is important to
notice that high social welfare could mean high social disparity and therefore both
index should be taken into account.

If the network of agents describes relations between criminals, the average ac-
tion has another interpretation [7]. The total activity 1′x of a criminal network
results proportional to the average action and, therefore, function (3.4) could be
used to analyze it.

In the context of quadratic games it is natural to introduce an external planner
that has the power to control agents incentives or the network to optimize the
social performance of interest. In the example of the class of students, the planner
could intervene to change incentives of agents in order to maximize the utility of
the class [37]. In the example of the criminal network, the planner acts to remove
a specific agent to minimize the total activity. However, if the planner has no
full knowledge on the incentive values, it is natural to consider the vector u as a
random vector and the expected value of the social performances.

3.4 production networks

Consider a static economy consisting of n competitive sectors denoted by V =
{1, 2, . . . ,n}, each of them producing a distinct product.

In the Cobb-Douglas model of an economy, firms in each sector transform inter-
mediate inputs and labor into final products. Formally, the output yi of firm i is
given by

yi = aie
ωi`βii

n∏
j=1

z
Aji

ji , i = 1, 2, . . . ,n , (3.13)

where ωi is the log-productivity shock, `i is the amount of labor employed by
industry i, zji is the amount of good j used to produce good i, ai is a constant,
and βi is the share of intermediate good in the production. The value Aij ≥ 0

indicates the share of good j in the production technology of good i.
In addition to firms, the economy is populated by a continuum of identical

consumers, and each consumer is endowed with a unit of labor that firms can be
hired for the purpose of production. The representative consumer has symmetric
preferences among all the products of the economy given by

U(c1, c2, . . . , cn) =
n∏
i

cγii , (3.14)

where ci is the amount of good i consumed and γi is the consumer preference
weight.
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The competitive equilibrium of this economy consists of a collection of prices
and quantities such that:

• for every representative firm i = 1, 2, . . . ,n in each sector, the employed labor
`i and the quantity of intermediate products (zij)i maximizes its profits

πi = piyi −w`i −
∑
j

pjzji ,

where pi is the price of good i, while taking the prices and the wage w as
given;

• the consumer vector cmaximizes the utility U(c1, c2, . . . , cn) given everything
else;

• the market for goods and the market for labor clear, that is, for each good i

must be satisfied∑
k

`k = 1 , yi = ci +
∑
j

zij , i = 1, 2, . . . ,n .

The network topology of the economy is conveniently represented by a directed
graph G = (V , E) with node set V = {1, 2, . . . ,n} and where there is a directed
link (i, j) from a node i to a node j if and only if Aji > 0, i.e., if the output of node
i is used as input in the production of node j. The effectiveness coefficients Aij
can be thought of as the entries of an n× n matrix A, which is also known as the
input-output matrix of the network economy. We define αi =

∑
j Aij and assume

the following normalizations:

αi + βi ≤ 1,
∑
k

γk = 1 .

The first inequality implies that A is a row-substochastic matrix (since Aij ≥ 0

and αi =
∑

j Aij ≤ 1 for every i), so that in particular its spectral radius ρ(A) ≤ 1.
Throughout, we shall assume that ρ(A) < 1.

Because of the assumption that ρ(A) < 1 the Leontief matrix M = (I −A)−1 is
well defined and can be expressed as the limit of the geometric series

M =
+∞∑
k=0

Ak = I +A+A2 +A3 + . . . .

It is possible to prove [3, 23, 6, 24] that, at the (Walrasian) equilibrium, the log-
productions satisfies

log y = Mω + κ , (3.15)
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where κ is a constant term. Notice that, this equilibrium could be written in term
of (3.2), assuming x = log y, B = I , and u = ω.

Within this context, a key role is played by the influence vector defined as

v := M ′1 .

The main statistic that is used in economic and production literature is the aggre-
gate output, defined as the log of the real value added in the economy 1′x.

The interconnections between different sectors may function as a propagation
mechanism of productivity shocks throughout the economy. A crucial measure of
economic fluctuations at an aggregate level is the standard deviation, or equiva-
lently the variance, of the economy’s aggregate output, which we refer to as the
aggregate volatility of the economy. Assuming that shocks among firms are inde-
pendent with mean 0 and variance σ2i , the aggregate volatility coincides with Γ.
This formulation of the aggregate volatility highlights that fluctuations at the ag-
gregate levels are linked to the structure of the economic network through the
influence vector.



4
M I N - M A X A D V E R S A R I A L P R O B L E M S O N N E T W O R K

In this chapter, we present the adversarial problem that will be the core of the
dissertation.

In Section 4.1, we introduce the adversarial min-max optimization problem.
Considerable attention has been recently devoted, particularly in the economic
literature, to the effects that a disturbance in the vector u can have on the network
equilibrium, in particular, how perturbation at the level of single agents can possi-
bly be amplified by the network interaction, and propagate to the other agents. We
take a further step in this direction and consider a more complex model, where
perturbations are complementary paired with protections, and we cast it into an
adversarial min-max problem. The first player (the attacker) can manipulate exoge-
nous perturbations that influence agents, while the second player (the defender)
applies a defense action weakening the action of the first one (which, in math-
ematical terms, translates into an increase in the cost of the attacker). The list
of examples continues by drawing connections from the considered optimization
problem and applications.

Then, Section 4.2 presents the essential mathematical properties of the optimiza-
tion problem and the objective function. Formally, we will show that the objective
function is a convex-concave function with respect to protections and perturba-
tions and motivates our min-max approach. In Section 4.3, we conclude this chap-
ter by providing the solution to the inner maximization problem, i.e., providing
the optimal perturbation of the attacker.

4.1 the adversarial min-max problem

As presented in Chapter 3, we here consider linear models in the form

x = (I −A)−1Bu ,

with the standing assumption that A ∈ Rn×n has a spectral radius less than 1 and
B ∈ Rn×m is nonnegative matrix, and measure the performance of the equilibrium
as described in Section 3.1.

27
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In our research, we introduce a novel approach to study counter-actions at the
nodes level to reduce the effects of a perturbation on u. Specifically, we assume
that the vector u has the following structure:

u = ū+ [ν]−1ω . (4.1)

where ūi is a reference value, ωi is a variable modeling the perturbation and νi > 0

is the protection actuated on node i. Below, we make precise our assumptions on
the various terms.

• ū is a given reference vector. In our analysis, the value of ū does not play any
role, for simplicity, from now on we assume that ū = 0.

• ω ∈ Rm is a vector modeling the exogenous perturbations. Throughout the
dissertation we will assume two kind of perturbations: deterministic (called
disturbances) and stochastic (called shocks). If ω is a shock, we denote with
K its covariance matrix, i.e., E[ωω′] = K. If ω is a perturbation, we denote
with K the rank-one matrix generated by ω, i.e., K = ωω′. We make the
assumption that matrix K is bounded by 1 in trace and we consider the set
of feasible perturbations, defined in terms of K, as

Ω =
{
K ∈ Rm×m | K = K ′, K � 0, Tr(K) = 1

}
. (4.2)

• [ν] = diag(ν1, ν2, . . . , νm) where ν is the intervention vector. Considering a
lower bound vector d ∈ Rm, we make the assumption that νi ≥ di for all i
and we consider, given a constant budget c ∈ R, such that c ≥ ‖d‖2, the set
of feasible intervention vectors defined as

Qc =
{
ν ∈ Rm | di ≤ νi,

∑
i

ν2i ≤ c

}
(4.3)

that is the protection vectors whose aggregated dislocations with respect to
d is bounded by c.

We are now ready to present the adversarial min-max optimization problem,
whose interpretation will be clarified in a few lines.

Let A ∈ Rn×n
+ and B ∈ Rn×m

+ such that ρ(A) < 1 and let M = (I − A)−1B.
For Y ∈ Rm×m such that Y = Y ′ and Y � 0, we define the adversarial min-max
optimization problem

min
ν∈Qc

max
K∈Ω

FY (ν,K) , (4.4)

where the objective function FY : Qc ×Ω→ R is defined as

FY (ν,K) = Tr
(
[ν]−1K[ν]−1M ′YM

)
. (4.5)



4.1 the adversarial min-max problem 29

We first observe that the above function derives directly from the quadratic perfor-
mance (3.7). The interpretation is that of an adversarial model where two agents
compete, an exogenous disturber that acts on K and a system defender that acts
on ν. We now present in more detail each element of the problem.

The matrix M ∈ Rn×m models the system formed by regular agents, whose
interactions are described by matrix A ∈ Rn×n

+ , and exogenous sources, whose
influences on regular agents is described by matrix B ∈ Rn×m

+ .
The matrix Y ∈ Rm×m is related to performance measures of the system, pre-

sented in Section 3.1, and shapes the objective function of the adversarial min-max
problem. Throughout the dissertation, we will consider three specific setting for
matrix Y : the identity matrix I , the normalized all ones matrix J , and the center-
ing matrix I − J , i.e., the matrix projecting on the space span{1}⊥, where span{v}
is the subspace spanned by a vector v.

The two sets Qc and Ω model how the two adversaries can intervene on the
system. Notice that the bound on the trace of K does not entail any loss of gen-
erality as a different bound can be absorbed in the bound of the defender. The
defender has a limited budget c and moreover has a lower bound d on the single
components. Typically, we will assume that di ≥ 1 that means that the defender
can not amplify the disturber action in any component.

Remark. In the case that ω is a random vector, we will consider the expected
value of (3.4), (3.5), and (3.6). We observe that also the expected value of the three
performance measures could be represented in the form (4.5). In fact, using the
linearity of the expected value and letting K = E[ωω′], the following relation
holds.

E [Tr (uu′M ′YM)] = E
[
Tr
(
ωω′[ν]−1M ′YM [ν]−1

)]
= Tr

(
E[ωω′][ν]−1M ′YM [ν]−1

)
= Tr

(
[ν]−1K[ν]−1M ′YM

)
= FY (ν,K) .

We will deal with different scenarios restricting the set Ω, i.e., specifying the
nature of the matrix of the exogenous input. In particular, throughout the disser-
tation, we will consider the subspace of diagonal nonnegative matrices and the
entire space of symmetric positive semi-definite matrices. We now present each
subspace in more detail.

The subspace of diagonal positive semi-definite matrices of size m ×m with
trace bounded by 1 will be denoted with D+ and is formally defined as

D+ :=

{
K ∈ Rm×m : K = [σ2],

∑
i∈S

σ2i = 1

}
. (4.6)
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In the context of stochastic exogenous input, a matrix [σ2] ∈ D+ characterizes the
space of uncorrelated shocks, i.e., ωi and ωj , such that E[ωiωj ] = 0,∀i 6= j ∈ S,
and vector σ2 represents the vector of variances.

The entire space of symmetric positive semi-definite matrices of size m ×m
with trace bounded by 1, already presented as Ω. We recall that a covariance
matrix is always symmetric and positive semi-definite. Therefore, in the context
of stochastic exogenous input, the set Ω exactly represents the set of all covariance
matrices with bounded total variance.

We conclude this section by presenting a series of applications of the min-max
optimization problem (4.4) and how we can write performances presented in
Chapter 3 in the unified way expressed by (4.5). From now on, it is convenient
to express performance Γ,Φ, and Ψ in terms of ν and K. Therefore, we will write
accordingly Γ(ν,K),Φ(ν,K) and Ψ(ν,K).

Example. (Friedkin-Johnsen) Consider the Friedkin-Johnsen opinion model con-
sidered in Section 3.2.

Define K = ωω′. The displacement ‖x‖2 coincides with Φ(ν,K) and polariza-
tion coincides with Ψ(ν,K). The adversarial min-max problem (4.4) shall be then
interpreted as follows.

The model for the input vector u in (4.1) can here be also interpreted as follows.
Assume that ω is a random variable of mean 0 and variance σ2i We refer to σ−2i
as to the expertise of agent i. Assuming that the expertise depends on the single
individual (e.g. school-level, access to information), we can interpret the multipli-
cation of the disturbance ωi’s by the quantity νi ≥ 1 as an action aimed to increase
the expertise of agent i to the new level ν2i σ

−2
i .

Example. (Quadratic games) Consider the quadratic games setting considered in
Section 3.3.

In this context, the vector u represents the standalone marginal return or individ-
ual’s incentives in taking action xi First set K = ωω′. Then the social welfare coin-
cides with Φ(ν,K), the social disparity coincides with Ψ(ν,K), and the squared
total action coincides with n2Γ(ν,K)

Assuming ω a random variable with mean E[ω] = 01 and covariance matrix
E[ωω′] = K, we could consider the expected value of social performances accord-
ingly.

In crime applications, where we seek for interventions to maximally diminish
the activity of the system, it is natural to consider the minimization of the func-
tional Γ(ν,K). Our proposed model studies the policy to minimize Γ(ν,K) within
the intervention described in (4.1) and should be compared with the analysis in
[7] where the authors study which player to remove in order to minimize the total
activity.
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Example. (Cobb-Douglas) Consider now the Cobb-Douglas model of economic
networks considered in Section 3.4.

In this setting, ωi represents the log-productivity shock of firm i and we assume
E[ω] = 01 and E[ωω′] = K. Therefore, matrix K represents the covariance matrix
of log-productivity shocks across economic sectors. Then, the aggregate volatility
coincides with Γ(ν,K).

Our intervention strategy, that consists in adding the design parameter νi in the
Cobb-Douglas model (3.13) such that it results

yi = aie
ωi/νi`βii

n∏
j=1

z
Aji

ji , i = 1, 2, . . . ,n ,

leads to a corresponding modification of the covariance matrixK given by [ν]−1K[ν]−1.
The optimization problem (4.4) we consider in this dissertation thus corresponds,
in the context of production networks, to the minimization of volatility assuming
an intervention policy that uses incentives to mitigate the effect of productivity
shocks.

4.2 properties of the optimization problem

In this section, we investigate the properties of problem (4.4). In particular, we
will show that the outer min problem is convex in ν and the inner max problem
is concave in K. This analysis motivates our approach of considering the min-
max problem in place of the opposite max-min problem, showing that these two
optimization problems are exactly the same.

As a first step, we reformulate the problem in order to highlight the aforemen-
tioned properties. In particular, we consider the change of variable qi = 1/νi, i =
1, . . . ,m. Considering d ∈ Rm

++ and c ≥ ‖d‖2, the feasible set of interventions Qc
becomes

Oc =
{
q ∈ Rm : 0 < qi ≤ 1/di,

∑
i

q−2i ≤ c

}
. (4.7)

Notice that, Oc is convex because it is the intersection of the convex function∑
i q
−2
i − c and the two halfspaces qi ≥ εi and qi ≤ di, where εi > 0 is defined as

follows. Consider the constraints
∑

i q
−2
i ≤ c, c ≥ 1′d and fix all variables except i

equal to their upper bounds, i.e. qj = 1/dj for j 6= i. Then, it results that qi ≥ εi =(
c−∑j 6=i d

2
j )
)

. Using parameter ε we could rewrite the constraint 0 < qi ≤ 1/di
as εi ≤ qi ≤ 1/di removing the strict inequality.
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The set Ω is convex and compact because it is the intersection of the closed
convex cone of positive semi-definite matrices S+ with the affine hyperplane of
equation Tr(K) = 1.

Then, with the aforementioned change of variables, we could define the new
objective function GY : Oc ×Ω→ R

GY (q,K) := Tr
(
[q]K[q]M ′YM

)
, (4.8)

and rewrite problem (4.4) in the new form

min
q∈Oc

max
K∈Ω

GY (q,K) . (4.9)

We now state an important property of (4.8).

Lemma 4.2.1. The objective functionGY : Oc×Ω→ R is convex-concave, i.e.GY (·,K) :
Oc → R is convex in q for fixed K, and GY (q, ·) : Ω→ R is concave in K for fixed q.

Proof. Considering that the trace is a linear operator, GY (q, ·) results linear in
K for a fixed q, and, since it linear, it results also convex and concave. To prove
convexity of GY (·,K) with respect to q for a fixed K, we could rewrite function
GY as

GY (q,K) = q′
(
K ◦M ′YM

)
q ,

where A ◦B denotes the Schur product of two matrices A and B of the same order,
i.e., (A ◦B)ij = AijBij . Given that both K and M ′YM are positive semi-definite
also (K ◦M ′YM) results positive semi-definite [42]. Therefore GY (·,K) results a
nonnegative quadratic form and hence a convex function of q.

The previous lemma ensures that the min-max problem is equivalent to the
max-min problem. Formally, the following result holds true.

Proposition 2. Consider d ∈ R++ and c ≥ ‖di‖2. Then,

min
q∈Oc

max
K∈Ω

GY (q,K) = max
K∈Ω

min
q∈Oc

GY (q,Ω) .

Proof. The result follows by Lemma 4.2.1 and by convexity and compactness of
Oc and Ω.

This last result is the well known Minimax Theorem of Von-Neumann and Fan
[32] and motivates our approach to the problem.

Given that problem (4.9) is convex in q for a fixed K and is equivalent to prob-
lem (4.4), also the latter results a convex problem in ν for a fixed K. Convexity
of the problem also ensures that standard optimization techniques can be used
to calculate the optimal protection numerically [16]. While many works have al-
ready presented practical and optimal methods to find the optimal solution, our
research points to a theoretical analysis that aims at relating network topology to
the nature of the optimal intervention.
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4.3 worst exogenous perturbation

In this section, we investigate and solve the inner maximization problem

max
K∈Ω

GY (q,K) , (4.10)

for the subset D+ and the entire space Ω. Given that GY is concave in K for a
fixed q ∈ Oc, we define the set of optimal points

K(q) = argmax
K∈Ω

GY (q,K).

The next result shows the solution to problem (4.10).

Lemma 4.3.1. Consider a fixed q ∈ Oc.

(i) If Ω is the entire space, then

max
K∈Ω

GY (q,K) = ρ
(
[q]M ′YM [q]

)
, (4.11)

and the maximum is reached by any matrix K ∈ Ω such that

K = ww
′
, w s.t. , ‖w‖ = 1, [q]M ′YM [q]w = ρ

(
[q]M ′YM [q]

)
w .

(ii) If Ω = D+, then

max
K∈D+

GY (q,K) = max
i∈S

M ′iYMi q
2
i , (4.12)

and the maximum is reached by any matrix K ∈ D+ defined as

K = [w], w s.t. ,
∑
i∈I

wi = 1, I := {i ∈ S : (M ′iJMi q
2
i = max

j
M ′jYMj q

2
j} .

Proof. (i) For any K ∈ Ω consider the spectral decomposition K =
∑

k λkwkw
′
k

where wk are the normalized eigenvectors of K (e.g. w′kwk = 1) and λk are the cor-
responding eigenvalues. We assume that eigenvalues are labeled in a decreasing
order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λm. We can compute GY (q,K) as follows:

GY (q,K) = Tr (
∑m

k=1 λkwkw
′
k[q]M

′YM [q])

=
∑m

k=1 λk Tr (wkw
′
k[q]M

′JM [q])

=
∑m

k=1 λkw
′
k[q]M

′YM [q]wk

≤ ∑m
k=1 λkρ ([q]M

′YM [q])

= ρ ([q]M ′YM [q]) .
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Let w̄ indicate the eigenvector associated to the spectral radius ρ. Equality in the
fourth line holds if and only if one of the wk is a normalized version of w̄, i.e., if
w1 = w̄/‖w̄‖ , λ1 = 1 and λk = 0 for every k > 1. This yields the result.

(ii) Consider K ∈ D+, defined as K = [w], w = (w1,w2, . . . ,wm). Function GY
becomes the weighted sum

GY (ν,K) =
m∑
k=1

wk
(
M ′kYMk q

2
k

)
.

Then, the problem is solved by any diagonal matrix K = [w] concentrated on a
subset of nodes I for which (M ′YM)ii q2i = M ′iYMi q

2
i , i ∈ I results maximal.

Remark. Consider the entire space Ω. The optimal K is a rank-one matrix con-
structed using the eigenvector associated to the largest eigenvalue of matrix [q]M ′YM [q].
Therefore, the deterministic case, i.e., when K = ωω′, reaches the same maximum
as the stochastic case, i.e., when K = E[ωω′]. This result allows to embed the two
instances in one single minimization problem.

In the same way we have defined K(y), we could define K(ν), that is, the set of
optimal points K ∈ K(ν) such that FJ (ν,K) is maximum. Notice that the results
of Lemma 4.3.1 could be reformulated using ν−1i in the place of qi, for all i.

In the following chapters, we will analyze the minimization problem

min
ν∈Qc

FY (ν,K), K ∈ K(ν) ,

for the different performance measures presented in Section 3.1 and for the two
forms of K(ν) presented by Lemma 4.3.1. In particular, we will dedicate Chapter 5

to the case (4.12) and Chapter 6 to (4.11).
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I N D E P E N D E N T S H O C K S

In this chapter, we study the adversarial min-max under the assumption that ma-
trix K belongs to the subset D+ ⊂ Ω of nonnegative diagonal matrices with
bounded trace.

In Section 5.1, we analyze the minimization problem that arises from K ∈ D+.
We will show the essential properties of (4.5) in the particular case of a diago-
nal matrix K and highlight the arising of different centrality measures related to
performances.

Then, Section 5.2 presents the optimal intervention that solves the minimization
problem of the defender. Solutions to these optimization problems will typically
exhibit a ’water-filling’ structure with the optimal solution ν concentrated on a
limited number of nodes. The main message coming from our analysis is that the
subset of nodes on which protection has to be taken to minimize the effect of
perturbations is not only function of the network topology but also depends on
the correlation pattern of the perturbations, as described by K, as well on the type
of performance, we are considering.

Section 5.3 is devoted to employing our main result in applicative contexts. We
will show two critical applications: the minimization of aggregate volatility and
the minimization of opinion dynamics performances, e.g., polarization and dis-
agreement, when initial inputs are stochastic vectors. Three main messages are
coming from this analysis. The first one is that the optimal protection has to be
proportional to the centrality related to the performance measure. In particular,
the ’water-filling’ structure suggests optimal protection has to level out inequal-
ities among agents. The second goal is to highlight the difference between cen-
trality measures that naturally arise considering different performances. In fact,
centrality measures could considerably change the ranking of agents’ importance.
The last message is that parameters c and d highly influence the structure of the
optimal protection. We will show how the budget c shapes the number of agents
that could be protected and how heterogeneity in lower bound vector d could
generate diverse protection even in regular networks.

Part of the work described in this chapter has been previously published in [26].

35
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5.1 the model

In this section, we study the min-max optimization problem (4.4) in the special
case when K is a nonnegative diagonal matrix. With an abuse of notation, we will
indicate with σ2 = (σ21,σ

2
2, . . . ,σ

2
m) the vector of diagonal elements of K, that is,

K = [σ2]. This analysis encompasses the case of independent shocks ω, having
mean E[ωi] = 01 and variance Var(ωi) = σ2i . Given that shocks are independent,
the covariance matrix K = E[ωω′] results a diagonal matrix having elements σ2

on the main diagonal.
In this section we review some results of Chapter 4 applied to the specific con-

text of diagonal matrix K. In the particular case of K ∈ D+ we obtain an easier
form of the objective function (4.5).

Proposition 3. Consider K = [σ2] ∈ D+,σ2 ∈ Rm
+ .

Then,
FY (ν,K) =

∑
i∈S

(
σ2i M

′
iYMi

)
/ν2i . (5.1)

Proof. Define K = [σ2], σ2 = (σ21,σ
2
2, . . . ,σ

2
m). Equation (5.1) derives from (4.5)

noticing that

Tr
(
[ν]−1[σ2][ν]−1M ′YM

)
= Tr

(
[ν]−2M ′YM [σ2]

)
.

The result follows by definition of trace.

It is important to notice that the i-th term M ′iYMi is nonnegative. In fact, given
that Y � 0, it results M ′iYMi ≥ 0. We could then define the centrality index π2i
equal to the i-th diagonal term of M ′YM . Formally, we define

π2i = M ′iYMi, i = 1, 2, . . . ,m , (5.2)

that measures the importance of agent i respects to the performance Y considered.
We now study the nature of π in the applications.

Example. (Friedkin-Johnsen) Consider the polarization index described by Ψ(ν,K).
In line with [6], we define the concentration centrality of node i as

pi = ‖Mi − n−11′Mi‖ , (5.3)

that defines how evenly agent i influence is distributed across the rest of the
network. Then, centrality π results the concentration centrality, i.e. πi = pi. Notice
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that this centrality index corresponds to the definition of population variance of
vector Mi. Population variance is formally defined as

δ2(Mi) :=
1

n

n∑
j=1

M2
ji − µ2i , µi =

1

n

n∑
j=1

Mji .

Then, it results that
p2i = nδ2(Mi) .

Example. (Quadratic games) Consider the expected value of social welfare de-
scribed by Φ(ν,K). In line with [52], we define the cycle centrality of node i as

`i = ‖Mi‖2 , (5.4)

that describes the extent to which agent i is present in cycles of the network. Then,
centrality π2i coincides with cycle centrality, i.e. π2i = `i.

Example. (Cobb-Douglas) Consider the aggregate volatility described by Γ(ν,K).
The well known Katz centrality, presented in Section 2.3 is here defined as

vi = M ′i1 . (5.5)

Then, centrality πi is the Katz centrality, i.e. πi = vi

In the next section we present the most important result of this chapter, showing
that the optimal intervention has to be proportional to the centrality π.

5.2 main result

In this section we present the solution of problem

min
ν∈Qc

max
K∈D+

∑
i

(σi πi/ νi)2 . (5.6)

We will refer to πi as to the centrality of agent i. We approach the min-max prob-
lem (5.6) by first analyzing the inner maximization problem. For convenience, to
improve the readability of the results we present again the problem (4.10) in the
particular case when K ∈ D+, that is, K is a nonnegative diagonal matrix. To this
aim, we define the function fπ : Qc → R as

fπ(ν) = max
K∈D+

FY (ν,K), ν ∈ Qc .

The next result, that has been already presented in Section 4.3, shows the solution
of the inner maximization problem and the nature of function fπ in terms of the
centrality vector π.
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Lemma 5.2.1. For every ν ∈ Qc it holds that

fπ(ν) = max
i∈S

(πi/νi)2 , (5.7)

and the maximum is reached by any matrix K defined as

K = [σ2], σ2 ∈ Rm s.t
∑
i∈I

σ2i = 1, I := {i ∈ S : πi/ν2i = max
j
πj/ν2j }.

Proof. Proof follows by applying Lemma 4.3.1.

We are now ready to study

fπ(ν
∗(c)) := min

ν∈Qc

fπ(ν).

Without lack of generality, we assume that the elements of π̂ = (π21/d21, π
2
2/d22, . . . , π

2
m/d2m)

are ordered in decreasing order, i.e., π̂1 ≥ π̂2 ≥ · · · ≥ π̂m. From now on, when we
refer to the i-th term of vectors d and π, we consider the order induced by π̂. For
example, the 2-nd term of d, indicated with d2, is the value of d related to π̂2. No-
tice that the highest value of π̂ is not necessary the node with the highest centrality
π. In fact, the paired vector π̂ embeds together centrality π and parameter d.

We now solve problem (5.6).
First we introduce the water-level function Tπ,d(ξ) : (0,+∞)→ R defined as

Tπ,d(ξ) :=
m∑
i=1

d2i max {1, π̂i/ξ} . (5.8)

We notice that Tπ,d is continuous, strictly decreasing in (0, π̂1], and

lim
ξ→0+

Tπ,d(ξ) = +∞, Tπ,d(π̂1) = ‖d‖2.

This implies that for every c ≥ ‖d‖2, it is well defined

ξ(c) := T−1π,d(c) .

Given that Tπ,d is strictly decreasing, then so is ξ(c). An example of the water-level
function is given in Figure 5.

We now define k(c) as the maximum index such that π̂k(c) > ξ(c). The following
result holds true.
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Figure 5: Water-level function Tπ,d(ξ) assuming di = 1 for all i. Vertical dashed lines indi-
cate values where ξ equals π2i . The horizontal dotted line indicates a given value
of c, while the vertical dotted line indicates ξ(c) = T−1

π,1(c).

Theorem 5.2.2. Let d ∈ R++ and c ≥ ‖d‖2.
It holds

min
ν∈Qc

fπ(ν) = ξ(c) , (5.9)

and the optimum value for ν(c) is reached by

ν∗i (c) =

{
πi/
√
ξ(c) if i ≤ k(c)

di otherwise .
(5.10)

Proof. We can reformulate the starting introducing a new slack variable ξ ∈ R as

min
ξ∈R,ν∈Qc

ξ

s.t. (πi/νi)2 ≤ ξ, i = 1, ...,m .

Define now the Lagrange multipliers µ ∈ R+,λ = (λ1, . . . ,λm) ∈ Rm
+ ,α =

(α1, . . . ,αm) ∈ Rm
+ . The Lagrangian of the problem results

L(ξ, ν,µ,λ,α) = ξ +
∑
i

αi
(
(πi/νi)2 − ξ

)
+ µ

(∑
i

ν2i − c
)
−
∑
i

λi(νi − di).
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Imposing first derivatives of L(ξ, ν,µ,λ,α) respect to all variables equal to zero
we obtain KKT conditions that are sufficient to find the optimal solution ν∗, ξ∗ and
optimal multipliers µ∗ and α∗

ν∗i ≥ di, µ∗ ≥ 0, α∗i ≥ 0, i = 1, . . . ,m (5.11)(
−2α∗i π2i (ν∗i )−3 + 2µ∗ν∗i

)
(ν∗i − di) = 0, i = 1, . . . ,m , (5.12)∑

i

α∗i = 1, µ∗

(∑
i

(ν∗i )
2 − c

)
= 0 , (5.13)

−2α∗i π2i (ν∗i )−3 + 2µ∗ν∗i ≥ 0, i = 1, . . . ,m , (5.14)

(πi/ν∗i )
2 ≤ ξ∗, α∗i

(
(πi/ν∗i )

2 − ξ∗
)
= 0, i = 1, . . . ,m . (5.15)

From now on we will omit the star ∗ to indicate the optimal point and the optimal
multiplier.

First notice that, if µ = 0, then αi must be equal to 0 to satisfy (5.14). Moreover,
if µ = 0, then also αj for j 6= i must be equal to 0 and therefore αi = 0,∀i and
equation (5.13) is not satisfied because

∑
i αi = 0 < 1. Hence, µ > 0 and αi > 0.

Given that αi > 0, (5.15) imposes that

ν2i =
π2i
ξ
.

If ξ > π̂i then νi results less than di and the system is not satisfied. Hence, ξ ≤ π̂i
and we have to analyze two different cases.

Assume first that ξ < π̂i. Then, νi results greater than di and (5.12) also implies
that

−αiπ2i /ν4i + µ = 0 .

If ξ = π̂i, then νi = di.
Hence, we have obtained that the optimal solution could be written as

νi = max
{
di, πi/

√
ξ
}
.

Plugging the optimal solution ν in the constraint
∑

i ν
2
i = c we obtain∑

i

max
{
d2i , π

2
i /ξ
}
= c .

Notice that the left hand side results equal to Tπ,d(ξ) by gathering d2i for each term
of the summation. Given that Tπ,d is invertible there exists an optimal ξ defined
as ξ = T−1π,d(c),∀c > ‖d‖2. Therefore, we could write optimal solution as

νi = max
{
di, πi/T−1π,d(c)

}
.
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We now comment on the results obtained. For simplicity of exposition, we as-
sume that d = 1 in order to mainly focus on the role of centrality vector π. The
vector π is then assumed ordered with a decreasing order. Then, the water-level
function (5.8) results

Tπ,1(ξ) =
m∑
i=1

max
{
1,π2i /ξ

}
.

The structure of the optimums we have found shows how the optimal protec-
tions are in general concentrated on a proper subset of nodes. In this respect, it is
interesting to analyze various regimes depending on the chosen budget c.

1. Protection is active one just one node, namely ν∗i (c) = 1 for all i > 2, if and
only if π22 < ξ(c) or, equivalently

c < Tπ,1(π
2
2) = (m− 1) + (π1/π2)

2
. (5.16)

In this case, we get from (5.9) that the optimal value is given by

fπ(ν
∗(c)) = (c− (m− 1))

−1
π21 . (5.17)

We will refer to this as to the low budget regime. In this regime the node to be
protected is node 1, that is, node with highest value of centrality π.

2. Protection is active on all nodes, namely ν∗i (c) > 1 for all i, if and only if
π2m > ξ(c) or, equivalently,

c > Tπ,1(π
2
m) = (‖π‖/πm)2 (5.18)

We will refer to this as to the high budget regime. In this regime, we get from
(5.9) that the optimal value is given by

fπ(ν
∗(c)) = c−1‖π‖2 . (5.19)

3. If π2i+1 < ξ(c) < π2i , then protection is active on a subset of nodes U =
{1, 2, . . . , i} and we get from (5.9) that the optimal value is given by

fπ(ν
∗(c)) =

c−∑
j/∈U

1

−1∑
i∈U

π2i . (5.20)

4. It follows from the shape of the optimum (5.10) that when the protection is
active, i.e. ν∗i (c) > 1, then the level of protection ν∗i (c) is proportional to the
term πi that resumes centrality but also the lower bound parameter.
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Figure 6: Water-filling example of optimal protection: 2 log(νi) + 2 log(π−1
i ) = log(ξ−1).

We have assumed that πi < 1,∀i.

We now make some considerations on the optimal solution ν∗(c) first focusing
on the role of centrality π and then on the role of parameter d.

Assume, again, that di = 1 for all i. When ξ(c) < π2i , the optimal protection on
node i has to satisfy the following relation

2 log(ν∗i (c)) + 2 log(π−1i ) = log(ξ(c)−1) .

When protection is active, ν∗(c) levels out the difference created by network topol-
ogy, embedded in the centrality π. In most applications, π is a centrality vector
normalized to sum up to one and therefore π1 results strictly less than 1. This fact
implies that both log(π−1i ), log(ξ(c)−1) result positive quantities.

This form of the solution is called water-filling structure and is widely used in
engineering problems. A typical example is the capacity-achieving solution for a
frequency-selective channel [41, 50]. We think of it as the ground level log(π−1i )
above area i, and then flood the region with water to a depth log(ξ−1), as de-
picted in Figure 6. The total amount of water used is then

∑m
i=1max{0, log(ξ−1)−

2 log(π−1i )}. We then increase the flood level until we have used a total amount
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of water equal to c to obtain ξ(c). The depth of water above patch i is then the
optimal value log(ν∗i (c)).

From this representation, it is clear that augmenting the amount of water through
budget c will increase the amount of protection νi(c)∗ on node i. Formally, we can
conclude that ν∗i (c) results non-decreasing in c.

Consider now a network such that πi is equal for all the agents. Assuming a
normalization on the sum of π, we then consider πi = 1/

√
m. We now focus the

attention on the role of parameter di.
From (5.10), we deduce that a protection is active of node i if

ξ(c) ≤ 1

m
d−2i .

Given that ξ(c) is strictly decreasing in c, higher di implies that an higher budget
c is needed to activate a protection on node i. As a concrete examples assume that
dj > di and that dk = di for all k 6= j. Then, it is important to notice that the
optimal protection is equal on all the agents k 6= j.

When neither di = 1 nor πi = 1/
√
m, for all i, the analysis becomes much more

complicated because the most important agent π1 could not be the most important
with respect to the adjusted vector π̂. In the next section, we will draw interesting
examples showing these behaviors.

5.3 applications

5.3.1 Aggregate volatility

We recall that, in this context, the equilibrium vector is defined as

x = M [ν]−1ω, M = (1− β)(I − βP )−1 ,

where β ∈ (0, 1) and P is a row-stochastic matrix that represents the interaction
network between firms. Throughout this section, we will assume that matrix P is
the normalized adjacency matrix.

Formally, consider an economy of n firms and denote with W its adjacency
matrix. We put P = [w]−1W , where w = W1 is the out-degree vector. If wi = 0

the we set Pij = 0 for all j. We will set d = 1 in order to focus on the role of the
centrality π.

The most important performance measure in the Cobb-Douglas model is the
aggregate volatility, described in our theory by Γ(ν,K). Assuming that the log-
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productivity shocks ω are independent with mean E[ωi] = 0 and variance Var(ωi) =
σ2i > 0 , it is possible to write aggregate volatility using the form (5.1) as

Γ(ν, [σ2]) =
n∑
i=1

(σivi/νi)2 . (5.21)

We now apply the result of Theorem 5.2.2 to aggregate volatility to calculate
low and high budget regimes. Assume that agents are ordered in decreasing order
with respect to the centrality vector v.

If c < c = (n− 1) + (v1/v2)2, i.e. c is in the low budget regime, then the optimal
aggregate volatility results

fv(ν
∗(c)) = (c− (n− 1))−1v21 .

Instead, c is in the high budget regime if c > c = ‖v‖2/v2n, and the optimal
aggregate volatility results

fv(ν
∗(c)) = c−1‖v‖2 .

It is important to notice that the optimal aggregate volatility depends on network
topology through the vector v, the vector of Katz centrality. Higher is the gap
between the first two most important agents, and higher is the value of c. Lower
is the difference among agents’ importance, and lower is the value of c. We also
observe that optimal value fv(ν∗(c)) is higher in networks with the highest Katz
centrality norm, that is, networks that manifest the presence of central hubs and
generate disparities. Regular networks are those with lowest value of fv(ν∗(c)).

Following the analysis done in [6, 37], we now want to compare different
economies studying values c, c and ‖v‖2.

An important class of economies is formed by regular networks. Within the
Cobb-Douglas model, a regular network implies that matrix P is doubly stochas-
tic. A doubly-stochastic matrix P also implies that M = (1− β)(I − βP )−1 results
doubly-stochastic and Katz centrality results v = n−11. Given that in regular net-
works all the agents have the same centrality vi = 1/n, it results that c = c = 0.

We now consider four economies with n nodes: the cycle economy Cn, the star
economy Sn, the path economy Pn, and the complete-bipartite economy Bn1,n2,
such that n1 + n2 = n. All the economies are depicted in Figure 7.

We now study the high budget and the low budget regime for these four
economies.

• (Cn) It is easy to see that Cn results in a regular network and that matrix
P is doubly stochastic, . As highlighted before, all the agents have the same
centrality and c = c = 0.
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(d) Path economy with n agents.

Figure 7: Economic networks with n nodes.
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• (Sn) Denoting the hub with subscript 1 and leafs with subscript j, the cen-
trality vector v results

v1 = (1+ (n− 1)β)/n, vj = (1− β)/n, ‖v‖2 = β2 + (1− β2)/n .

For the star network, we have to consider only two different regimes. In the
low budget regime, only node 1 is protected and persists until c reaches:

c = c = n
1+ β2(n− 1)

(1− β)2 .

• (Pn) For this economy the centrality vector results

vn = (1− β)/n, vk = vn

n−k∑
j=0

βj if k = 2, . . . ,n− 1, v1 =
n−1∑
j=0

βj/n .

Given that all the agents have different centrality, there exist n− 1 different
regimes. The norm results

‖v‖2 = v2n

1+ n−1∑
k=1

n−k∑
j=0

βj

2
 ,

and, therefore, the low budget regime and high budget regimes are

c = (n− 1) +

(
β

1− β +
1

1− βn−1
)2

, c = 1+
n−1∑
k=1

(1− βn−k+1)2

(1− β)2 .

• (Bn1,n2) Assume that 1 ≤ n1 ≤ n2 and denote with B1 and B2 the two subset
of nodes. For this economy the centrality vector is

vi =
(1+ βn2/n1)
n(1+ β)

if i ∈ B1, vj =
(1+ βn1/n2)
n(1+ β)

if j ∈ B2 ,

and the euclidean norm results

‖v‖2 = n(1+ 2β) + β2
(
n22/n21 + n21/n22

)
n2(1+ β)2

.

Observe that vi ≥ vj , and also in this case, there are only two regimes. In
the first, the low budget regime, the optimal protection intervenes on the set
B1 allocating, equal resources all over agents in B1. In the second, the high
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budget regime, when there are enough resources, also protections on agents
in B2 start. This effect arises due to the "second order" effect of the protection
on a network: protecting agents in B1 affects agents in B2 indirectly. The low
budget regime and high budget regime result

c = c = (n− 1) +

(
1+ βn2/n1
1+ βn1/n2

)2

.

Table 3 resumes results when n → ∞ and β remains fixed. We have denoted
γ = β/(1− β) and for the bipartite economy we have assumed that n2 → ∞ and
n1 remains fixed and finite.

c c

Sn (nγ)2 (nγ)2

Pn n n/(1− β)2
Bn1,n2 (n2β/n1)2 (n2β/n1)2

Table 3: Resuming table of low budget and high budget regimes when n→∞ for the star
Sn, the path Pn, and the complete bipartite Bn1,n2 economies.

5.3.2 Stochastic inputs in opinion dynamics

We recall that, in this context, the equilibrium vector is defined as

x = M [ν]−1ω, M = (I − [λ]P )−1(I − [λ]) ,

where λ ∈ Rn,λi ∈ [0, 1], for all i = 1, . . . ,m, and P is a row-stochastic matrix that
represents the social network of agents. Throughout this section, we will assume
that matrix P equals the normalized adjacency matrix. Moreover, we assume λ =
β1, β ∈ [0, 1]. Notice that, with this last assumption, the Cobb-Douglas model
coincides with the Friedkin-Johnsen model.

In this section, we will show the differences between centralities v, `, and p, and
implications on the structure of the optimal protection ν∗(c). In particular, we will
show a numerical example of an undirected network of n = 10 agents.

We start comparing centralities assuming that they are all normalized to sum
up to one.

Consider the undirected network of n = 10 agents depicted in Figure 8. Table
4 resumes centrality v, `, and p assuming β = 0.5. All centrality values have to be
multiplied by 10−2.
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Figure 8: Undirected network with n = 10 nodes.

i 1 2 3 4 5 6 7 8 9 10

v 6.4 14.3 10.2 10.2 10.9 10.9 8.4 12.6 9 6.6

` 8.8 11.3 10.2 10.2 9.9 9.9 9.7 11.3 9 9

p 9.4 10 10.5 10.5 9 9 10.4 11.7 9.5 9.7

Table 4: Centrality v, `, and p of network depicted in Figure 8, assuming β = 0.5. The first
column represents the agents. All centrality values have to be multiplied by 10−2.

First of all, notice that agent 2 is the most important agent for v, followed by
agents 8, 5, and 6. For ` there are two agents that are equally important, agent 2
and agent 8, followed by agents 3 and 4. For centrality p, the agent with highest
centrality is agent 8, followed by agents 3 and 4. However, the fact that v2 > `2
implies that agent 2 has much more importance if we consider centrality v. In
fact, this last centrality measures the importance of an agent as a function of the
importance of its neighbors and is a more local measure because neighbors of
the neighbors account for less and less. This is not the case for cycle centrality `

and concentration centrality p, given that both take into account a larger sphere
of influence of a node.

This phenomenon is clear if we consider other agents of the network. Even if the
ranking of the first two agents (agents 2 and 8) is equal for both v and `, it changes
starting from the third position of the ranking. In fact, it seems that centrality v

gives much more importance to agents 5 and 6 because it is directly connected to
the most important agents, i.e. agents 2 and 8. On the contrary, centrality ` gives
more importance to agents 3 and 4, which are only connected to agent 2. It seems
that the importance of agents 5 and 6 is incorporated in one of agents 2 and 8.

Consider now concentration centrality p. Except for node 8, this centrality pro-
duces a significantly different ranking. We recall that the concentration centrality
of agent i captures how its influences are distributed across the rest of the network.
A higher value of pi means that the agent does not distribute its influence equally.
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In general, it is important to notice that values in v are much more dislocated
with respect to the value central value 1/n, the empirical mean value.

We now show differences in the optimal protections applied to the network of
Figure 8. Consider the Friefkin-Johnsen model (3.11) with the standing assump-
tion of independent perturbation ω with mean E[ω] = 01 and diagonal covariance
matrix K = [σ2],σ2 = (σ21,σ

2
2, . . . ,σ

2
n). The form of the optimal solution, given by

Theorem 5.2.2, relates each solution to the specific centrality π, that depends on
the performance considered. We analyze the difference in the optimal protection
for the three objective functions fv, f`, and fp. We will denote with νv(c) the op-
timal solution of minν∈Qc fv(ν), with ν`(c) the optimal solution of minν∈Qc f`(ν) ,
and with νp(c) the optimal solution of minν∈Qc fp(ν) .

Figure 9 shows the square of three optimal performances νv(c), ν`(c), and νp(c)
when β = 0.5 and for c ∈ [10, 20]. There are two main facts to highlight.

• Differences in the dispersion of centrality values are reflected in values of
c for which the protections became actives on nodes, depicted with dashed
vertical lines. In particular, the main difference in optimal protections is the
beginning of the high budget regime, that is, the value of c such ν∗(c) > 1.
In the interval c ∈ [10, 20], the optimal protectionνv(c) does not even start
the high budget regime. Instead, both ν`(c) and νp(c) start the high budget
regime quite fast, i.e., for c < 13. Protection νp(c) is the one that concentrates
the activation in the tight interval.

• Clearly, having fewer protections active implies that protections’ strength on
nodes is higher. In particular, notice that the strength of νv(c) is much higher
than the others, captured by values in the y-axis. Then, in order to minimize
fv, it is important to target the most important agents with high protection.
Instead, both ν`(c) and νp(c) distribute the available budget in a much wider
way.

We conclude by stating the most important issue that arises by comparing central-
ity measures v, `, and p on the same network. Optimal protections ν`(c) and νp(c)
take into account more the network as a whole than νv(c).
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Figure 9: Optimal protections νv, ν` and νp in the case of an undirected social network of
n = 10 nodes.



6
C O R R E L AT I O N A M O N G D I S T U R B A N C E S

In this chapter, we undertake a fundamental study of the adversarial min-max
problem (4.4) under the assumption that matrix K belongs to the set Ω.

In Section 6.1, we introduce the min-max problem stating important general
properties. Differently from Chapter 5, in this chapter, we analyze separately three
different problems that derive from applications and depend on the nature of
matrix Y . In particular, we will consider Y = n−1J (related to aggregate volatility),
Y = I (related to social welfare and absolute displacement), and Y = (I − J)
(related to polarization).

In Section 6.2, we study and solve the adversarial problem in the case Y = n−1J .
It is immediate to notice that, in this case, matrix M ′YM results in a rank-one ma-
trix. We will show that this simplification allows studying the external minimiza-
tion problem using similar tools used in Section 5.2. Similarly to Section 5.3.1,
the centrality measure that naturally emerges from this analysis is the Bonacich
centrality, and the optimal intervention of the defender should be derived in an
explicit form.

Then, in Section 6.3, we study and solve the adversarial problem in the case
Y = I . The minimization problem considered in this section is much more dif-
ficult with respect to the case Y = n−1J and could be defined as an eigenvalue
optimization problem [33, 53]. Even if this class of problem is, in general, convex
and hence solvable with standard optimization techniques, it is not straightfor-
ward to obtain a closed form solution. The main contribution of this section is an
explicit recursive solution of the min-max problem that shows how the optimal
solution for the defender is to invest its mitigation resources on all nodes if her
available budget is sufficiently high or on just a subset of nodes otherwise. Emerg-
ing from the analysis is a novel network centrality measure on the set of inputs
that indicates which are the most influential inputs on which the defender should
mostly intervene. Part of the work described in this section has been previously
published in [27].

We end this chapter with Section 6.4 by presenting and studying the min-max
problem in the case Y = I − J . Similarly to the case Y = I , also in this case the
minimization problem should be defined in the class of constrained spectral ra-
dius optimization. However, differently from the previous analysis, matrix M ′YM
has negative entries and therefore complicates the study. This section shows a part

51
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of ongoing research and examines the particular cases of a doubly-stochastic ma-
trix M .

Throughout each section, we draw examples coming from applications, in line
with the ones presented in the previous chapter, to show relevance of our solu-
tions.

6.1 the model

In this chapter, we want to make an exhaustive study of the adversarial min-max
optimization problem

min
ν∈Qc

max
K∈Ω

FY (ν,K) , (6.1)

where, we recall,
FY (ν,K) = Tr

(
[ν]−1K[ν]−1M ′YM

)
,

and Ω represents the space of nonnegative positive semi-definite matrices with
trace bounded by one. In particular, defining

K(ν) = argmax
K∈Ω

FY (ν,K) ,

Lemma 4.3.1 gives the explicit formula of F (ν,K(ν)) characterizing it as the spec-
tral radius of matrix [ν]−1M ′YM [ν]−1, i.e.

F (ν,K(ν)) = ρ
(
[ν]−1M ′YM [ν]−1

)
. (6.2)

Elements of matrix [ν]−1M ′YM [ν]−1 depend analytically on ν and, therefore, its
eigenvalues result continuous functions of ν. However, the main problem of (6.2)
is that eigenvalues of [ν]−1M ′YM [ν]−1, and hence its spectral radius, may not
be differentiable as they coalesce. In this case, standard optimization techniques,
such as the method of Lagrange multiplier, could not be applied [53]. In the next
sections, we show that for the two measures Γ and Φ we are able to bypass this
problem.

Remark. Depending on properties of matrix Y , the nature of ρ
(
[ν]−1M ′YM [ν]−1

)
radically changes. Consider for examples Y = I and Y = J . In the first case,
the matrix M ′YM simply results M ′M , and F (ν,K(ν)) represents the spectral
radius of a full rank matrix. In the second case, the matrix M ′YM results the
rank-one matrix M ′11′M and therefore F (ν,K(ν)) could be easily represented as
Tr
(
[ν]−1M ′11′M [ν]−1

)
, a much more easier case than Y = I .
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Given that the difficulty of Y = n−1J is much less than Y = I and Y = I − J ,
in the following sections, we study (6.1) separately. We start with Y = n−1J ,
where we are able to explicitly find the optimal intervention using similar tools of
Chapter 5. Then, we continue with Y = I , a much more complex case for which
we give an exact iterative solution. In the last section, we study Y = I − J , where
we find an explicit solution to the particular case of doubly-stochastic matrix M .

6.2 average measure

In this section we solve the optimization problem

min
ν∈Qc

max
K∈Ω

n−1Tr
(
[ν]−1K[ν]−1M ′JM

)
, (6.3)

that is, problem (6.1) restricted to the case of Y = n−1J .
We recall that Fn−1J coincides with Γ and, in this section, we reuse this last

symbol to denote the objective function of (6.3). We also recall that Γ describes the
aggregate volatility of an economic network. K ∈ Ω allows considering correla-
tions among log-productivity shocks and not only independent shocks.

As highlighted before, in the special case Y = n−1J the spectral radius of
n−1[ν]−1M ′JM [ν]−1 has an easy representation. Notice, in fact, that M ′JM is a
rank-one matrix and, therefore, its spectral radius coincides with its trace.

Define the function γ : Qc → R as

γ(ν) = max
K∈Ω

Γ(ν,K), ν ∈ Qc ,

and let v be the vector defined as

v = n−1M ′1 ,

in line with definition of Katz centrality (5.5). The next result shows the nature of
the function γ.

Corollary 1. For every ν in Qc, it holds

γ(ν) =
∑
i∈S

(vi/νi)2 . (6.4)

Proof. The proof follows by the fact that spectral radius of a rank-one matrix is
equal to its trace.
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Function γ results in a weighted sum of separable functions. Moreover, (6.4) coin-
cides with the objective function of problem (5.6) when matrix K is equal to the
identity matrix.

We now present the solution to the outer minimization problem of (6.3).
If K ∈ K(ν), the starting optimization problem (6.3) becomes

min
ν∈Qc

∑
i∈S

(vi/νi)2 . (6.5)

Since Qc is convex, then the minimum of γ on such a set is unique. We denote
it by ν∗(c) to remember its dependence on the budget c.

Before stating the main result of this section we need to introduce some more
concepts. Similarly to the analysis done in Section 5.2 we introduce the vector
v̂ = (v1/d21, v2/d22, . . . , vm/d2m), assuming a decreasing order in its elements, i.e
v̂1 ≥ v̂2 ≥ · · · ≥ v̂m. Changing π with v, the water-level function (5.8) becomes the
function Tv,d(ξ) : (0,+∞)→ R given by

Tv,d(ξ) :=
m∑
i=1

d2i max {1, v̂i/ξ} . (6.6)

We notice again that Tv,d is continuous, strictly decreasing in (0, v̂1], and satisfies

lim
ξ→0+

Tv,d(ξ) = +∞, Tv,d(v̂1) = ‖d‖2.

This implies that for every c ≥ ‖d‖2, it is well defined ξ(c) := T−1v,d (c). Let k(c) be
the maximum index such that v̂k(c) > ξ(c).

The following result holds true.

Theorem 6.2.1. Let d ∈ R++ and c ≥ ‖d‖2.
It holds

min
ν∈Qc

γ(ν) = ξ(c)
∑
i≤k(c)

vi +
∑
i>k(c)

(vi/di)2 , (6.7)

and the optimum value for ν(c) is reached by

ν∗i (c) =

{ √
vi/ξ(c) if i ≤ k(c)

di otherwise .
(6.8)

Proof. During the proof we will use νi instead of νi(c) to simplify the notation.
Monotonicity properties of γ imply that, necessarily, ‖ν‖2 = c. Using classical
Lagrangian multipliers techniques, we obtain the following equations:

2µ νi − 2v2i /ν3i ≥ 0, i = 1, 2, . . .m

‖ν‖2 = c,(
µ− v2i /ν4i

)
(νi − di) = 0, i = 1, 2, . . .m ,

(6.9)
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where µ > 0 is the Lagrange multiplier associated to the constraint ‖ν‖2 ≤ c. We
define ξ =

√
µ and we proceed as follows.

Then, the first bulk of equations yield

νi ≥
√
vi/ξ. (6.10)

Similarly to the proof of Theorem 5.2.2 we now analyze the nature of (6.21) as a
function of ξ.

The lower bound constraint νi ≥ di imposes that ξ ≤ vi/d2i , for all i.
Assume first that ξ < vi/d2i . Then, νi results greater than di. Hence, to satisfy

the third equation of (6.9) it results

νi =
√
vi/ξi .

Assume now ξ = vi/d2i . Then, (6.10) results νi ≥ di. We now prove that νi = di.
Assume by contradiction that νi > di =

√
vi/xi. Then, the third equation of (6.9)

is never satisfied and therefore we conclude that νi = di.
Hence, we have obtained that the optimal solution could be written as

νi = max
{
di,
√
vi/ξ

}
.

Plugging the optimal solution ν in the constraint
∑

i ν
2
i = c we obtain∑

i

max
{
d2i , vi/ξ

}
= c .

Notice that the left hand side is Tv,d(ξ). Given that Tv,d is invertible there exists
an optimal ξ defined as ξ = T−1v,d (c),∀c > ‖d‖2. Therefore, we could write optimal
solution as

νi = max
{
di,
√
vi/T−1v,d (c)

}
.

Plugging this value in (6.5) gives the result.

We now comment on the results obtained. Similarly to the results of Theorem
5.2.2, the structure of the optimums we have found shows how the optimal protec-
tions are, in general, concentrated on a proper subset of nodes. We then analyze
various regimes depending on the chosen budget cost c. For simplicity of exposi-
tion, we assume that d = 1 in order to mainly focus on the role of Katz centrality
vector v. The vector v is then assumed ordered with a decreasing order.

1. The low budget regime exists if c is such that c < Tv,1(v2) = (m− 1) + v1/v2.
In this case, we get from (6.7) that the optimal value is given by

γ(ν∗(c)) = (c− (m− 1))
−1
v1 +

∑
i≥2

v2i . (6.11)
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2. The high budget regime exists if c is such that c > Tv,1(vm) =
∑

i∈S (vi/vm).
In this regime, we get from (6.7) that the optimal value is given by

γ(ν∗(c)) = c−1
∑
i∈S

vi . (6.12)

Same considerations drawn for results of Theorem 5.2.2 are still valid. The main
difference to notice with respect to the objective function fv is that γ(ν∗(c)) also
consider the uncontrolled part, characterized by

∑
i>k(c) v

2
i . This difference is mo-

tivated by the nature of K. In fact, when K is a diagonal matrix, the effect of the
worst perturbation, described in Lemma 5.2.1, is focused on one agent only. Dif-
ferently, when K is a full matrix, the effect of the worst perturbation influences
also other agents of the network.

Remark. In most applications, the vector v is assumed to sum up to one. There-
fore, result (6.12) states that all networks perform equally in the high budget
regime.

In the next part, we continue the analysis done on the Cobb-Douglas model,
started in Section 5.3.1, in order to highlight differences between ν∗(c) when K is
diagonal and when is not.

6.2.1 Application: aggregate volatility with correlated shocks

We compute the low and high budget regimes (6.11) and (6.12) for the economies
described by Figure 7. As stated in the previous remark, given that 1′v = 1, the
optimal value γ(ν∗(c)) results equal among all networks. We also observe that the
optimal protection (6.8) on agent i depends on vi, while, in the case of independent
perturbations, depends on v2i .

• (Cn) Also in this case, the optimal protection on cycle economy, and more in
general on regular economies, is equal for all the agents. This is motivated
by the fact that, in a regular economy, all the agents have the same centrality
v and, therefore, the optimal protection consists always in protecting all the
agents, equally dividing the available budget c. Hence, low budget and high
budget regimes coincide and are equal to 0.

• (Sn) In the star economy the low budget regime, that coincides with high
budget regime, results

cS = cS = n/(1− β) .
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• (Pn) In the path economy the low budget and high budget regimes result

cP = (n− 1) +

(
β

1− β +
1

1− βn−1
)
, cP = n/(1− β) .

• (Bn1,n2) In the complete bipartite economy the low budget and high budget
regimes result

cB = cB = n
(1+ β)

(1+ βn1/n2)
.

We now compare these results with ones of Section 5.3.1. To differentiate bud-
get regimes, we indicate cσ, cσ low and high budget regimes of Section 5.3.1 and
simply c, c low and high budget regimes of this section.

We start comparing low budget regimes keeping n and β fixed. We observe that
c ≤ cσ for the three economies that are not regular, i.e. the star, the path, and
the bipartite economies. This means that to protect the network from a correlated
perturbation, it is better to divide the available budget among a larger set of nodes.

In line with observations on the low budget regimes, it is true that c ≤ cσ.
When K is full, the optimal intervention starts before protecting all the agents in
the network. This fact is motivated by correlations between perturbations.

Table 5 resumes values c and c when n → ∞ and β is fixed. It also shows
low and high budget regimes cσ, cσ calculated in Section 5.3.1. For the bipartite
economy, we have assumed that n2 →∞ and n1 remain fixed and finite.

c cσ c cσ

Sn n/(1− β) (nβ)2/(1− β)2 n/(1− β) (nβ)2/(1− β)2
Pn n n n/(1− β) n/(1− β)2

Bn1,n2 n(1+ β) (nβ)2 n(1+ β) (nβ)2

Table 5: Resuming table of low and high budget regimes when n→∞ for the star Sn, the
path Pn, and the complete bipartite Bn1,n2 economies.

6.3 magnitude measure

In this section we solve the optimization problem

min
ν∈Qc

max
K∈Ω

Tr
(
[ν]−1K[ν]−1M ′M

)
, (6.13)

that is, problem (6.1) restricted to the case of Y = I . We recall that FI coincides
with Ψ and, in this section, we reuse this last symbol to denote the objective
function of (6.13).
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In this chapter, we define matrix

H = M ′M ∈ Rm×m
+ (6.14)

that results a nonnegative symmetric matrix such that Hij > 0 if and only if there
exists at least a regular agent k from which both sources i and j are reachable in
the graph G. In fact, we may interpret H as the weighted adjacency matrix of a
new undirected graph H = (S,F) with node set S, whereby i and j are linked by
an undirected link of weight Hij if and only if there exists at least a regular agent
k that is (possibly indirectly) influenced by both sources i and j in the original
network G. We shall denote by

π =
1∑
i,j Hij

H1 , (6.15)

the normalized degree centrality vector of this graph.
To maintain a simplicity of exposition, we shall make the following assumption.

Assumption 2. The matrix H is irreducible.

Assumption 2 is equivalent to requiring that the graph H is connected. Notice
that a sufficient condition for Assumption 2 to be satisfied is that A+ A′ is irre-
ducible. From the network point of view, the previous assumption implies that
the graph has to be weakly connected, that is, replacing all directed edges with
undirected ones generates a connected graph.

We make some more comments on Assumption 2. Consider H composed by
k ≥ 2 connected components H1,H2, . . . ,Hk. Then, matrix H results reducible
and, given that it is symmetric, it must exists a block diagonal representation

H =


HS1 0 · · · 0

0 HS2 · · · 0
... . . . ...
0 0 · · · HSk

 , (6.16)

where the set of agents S has been partitioned in k subsets S1,S2, . . . ,Sk such that
Hi = (Si, Ei), where Ei is the set of edges of graph H that connect agents in Si.
The case of H composed of multiple connected components will be commented
on later.

6.3.1 Weakly connected network

In this section, we analyze the case of irreducible matrix H .
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We first set some further notation. We approach the min-max problem (4.4)
by first analyzing the inner maximization problem. To this aim, we define the
function φ : Qc → R as

φ(ν) = max
K∈Ω

Φ(ν,K), ν ∈ Qc.

The next result gathers some important facts on the function φ.

Lemma 6.3.1. Let d ∈ Rm
++ and c ≥ ‖d‖2.

Then, for every ν in Qc, we have

(i) φ(ν) = ρ
(
[ν]−1H [ν]−1

)
= ρ

(
M [ν]−2M ′

)
.

If Assumption 2 is satisfied, then:

(ii) φ(ν) is a simple eigenvalue of [ν]−1H [ν]−1

(iii) φ(ν) is strictly convex in ν.

(iv)
∂

∂νi
φ(ν) = −2(M ′z)2i/ν3i , (6.17)

where z is the dominant eigenvector of M [ν]−2M ′ associated to the eigenvalue
φ(ν).

Proof. Appendix 8.

Since Qc is convex, Lemma 6.3.1 implies that the minimum of φ on such a set is
unique. We denote it by ν∗(c) to remember its dependence on the budget c.

We first solve the min-max problem relatively to the unconstrained case where
we drop the lower bound conditions expressed through d. We define, for every
positive scalar c,

Q0
c = {ν ∈ Rm | νi > 0, ‖ν‖2 ≤ c}, (6.18)

and we consider
min
ν∈Q0

c

max
K∈Ω

Φ(ν,K) = min
ν∈Q0

c

φ(ν) . (6.19)

From Lemma 6.3.1 we deduce that the minimum above is unique and we indicate
it as ν0(c). An explicit form of ν0(c) is presented below.

Proposition 4. For every c > 0, we have that

ν0(c) = c
√
π, min

ν∈Q0
c

φ(ν) = φ(c
√
π) =

1′H1

c
.
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Proof. Monotonicity properties of φ (see relations (6.17)) imply that, necessarily,
‖ν0‖2(c) = c. Using the explicit expression for the derivative of the objective func-
tion in 6.17 and classical Lagrangian multipliers techniques, we obtain the follow-
ing equations: 

−2ν−3i (M ′z)2i + 2µ νi = 0 i ∈ S
‖ν‖2 = c,

M [ν]−2M ′z = ρz

(6.20)

where µ is the Lagrangian multiplier, ρ = φ(ν) is the value function and z is the
positive dominant eigenvector of M [ν]−2M ′. We proceed as follows. The first bulk
of equations yield

µ1/2[ν]21 = M ′z. (6.21)

Substituting in the third equation, we obtain

µ1/2M1 = ρz. (6.22)

As ρ > 0 and z > 0, we derive from (6.21) and (6.22) that

ν = µ−1/2M ′z = ρ−1M ′M1. (6.23)

The fact that ‖ν‖2 = c yields the thesis.

We now notice that the unconstrained solution ν0(c) computed in Proposition
4 satisfies

ν0(c) ∈ Qc ⇔ c ≥ c0 =
m

max
i=1

d2i
πi

.

For such values of c, in consideration of the fact that Qc ⊆ Q0
c , we have that the

solution found also solves the constrained minimum problem. We gather this in
the following result.

Theorem 6.3.2. Let H = M ′M ,M ∈ Rn×m
+ satisfies Assumption 2.

Then, for every d ∈ Rm
++ and c ≥ c0 we have

ν∗(c) = c
√
π, φ(ν∗(c)) =

1′H1

c
. (6.24)

In the rest of the section, we refer to the range c ≥ c0 as to the high budget regime.
We recall one more time that the threshold value c0 depends on the topology of
the network, through π, but also on the lower bound vector d.

Remark. Assume that M is row-stochastic and consider Y = I . Then, the new
centrality π defined in (6.15) coincides with v, defined in (5.5). Optimal solutions of
the min-max problem (4.4) results in two different centrality dependent structure:
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• if K ∈ D+, then ν∗(c) depends on concentration centrality `;

• if K ∈ Ω and c ≥ c0, then ν∗(c) depends on Katz centrality v.

When c instead satisfies ‖d‖2 ≤ c < c0, we have that ν0(c) 6∈ Qc and, conse-
quently, the solution of the minimum constrained problem exhibits one or more
components saturated to their lower bound level, namely ν∗i (c) = di for some
i ∈ S. For later use, we define the set

Uc = {i ∈ S | ν∗i (c) > di}

that we call the set of active protections at budget level c.
As a pivot to study this more general case, we investigate a minimum problem

where we assume that some of the variables νi are constrained to their lower
bound level di, while the others are totally unconstrained.

We first set some notation. We assume agents to be split into two disjoint subsets
U ,W :

S = U ∪W .

Agents in U are unconstrained while agents in W are the constrained ones. We
define the new set of variables

QUc = {ν ∈ Rm
+ | νi = di ∀i ∈ W , ‖ν‖2 ≤ c},

and we split, accordingly,
M =

(
MU MW

)
.

We want to study
min
ν∈QUc

φ(ν) . (6.25)

As QUc is still convex, Lemma 6.3.1 yields that the minimum above is unique.
We denote it as νU (c) and we explicitly derive it using first order conditions as in
the proof of Proposition 4.

Proposition 5. Let H = M ′M ,M ∈ Rn×m
+ satisfies Assumption 2. We consider a

partition S = U ∪W where U 6= ∅ and we fix d ∈ RW++. Then, for every c ≥ ‖d‖2, the
solution νU (c) is completely described by these relations:

νU (c) =
(
M ′U

(
ρI −MW [d]−2M ′W

)−1
MU1, d

)
φ(νU (c)) = ρ

1′M ′U
(
ρI −MW [d]−2M ′W

)−1
MU1 = c− ‖d‖2.

(6.26)
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Proof. Appendix 8.

The following is the key technical result of this paper.

Theorem 6.3.3. Let H = M ′M ,M ∈ Rn×m
+ satisfies Assumption 2. Fix d ∈ Rm

++. Then,
the function ν∗ : Qc → Rm

++ is continuous and (entrywise) non decreasing.

Proof. Appendix 8.

Using the above result, we can give a complete description of the optimal so-
lution ν∗(c). This is the content of the following result that follows directly from
Theorem 6.3.3.

Corollary 2. Let H = M ′M ,M ∈ Rn×m
+ satisfies Assumption 2. Fix d ∈ Rm

++. Then,
there exists a finite sequence of points

c0 =
m

max
i=1

d2i
πi

> c1 > · · · > cs = 1′d

and subsets S ) U0 ) U1 ) · · · ) Us−1 such that

Uc =
{
S if c > c0

Uk if ck+1 < c ≤ ck, k = 0, . . . , s− 1

ν∗(c) =

{
ν0(c) if c > c0

νU
k
(c) if ck+1 < c ≤ ck, k = 0, . . . , s− 1.

This result says that the optimal protection vector ν∗ exhibits a ’water-filling’
structure as a function of the budget c. As we had already noticed, above the
threshold c0, ν∗ coincides with the minimum of the unconstrained case. At c = c0

one or more components saturate at their lower bound di and for an interval of
values ]c1, c0] all remaining components remain strictly above the corresponding
lower bound and the optimum ν∗ coincides with the solution of problem (6.25)
with U = Uc0 . At c1 more components will saturate and will remain stable in an
interval ]c2, c1] and so on.

We notice that the specific form of the solutions of problem (6.25) can be used
to make Corollary 2 an effective recursive characterization of the optimal solution.
Notice, in particular, that the sequence of thresholds ck and the subsets Uk can be
recursively computed through the following characterization

ck+1 = inf{c ≤ ck | νUki (c) > di ∀i ∈ Uk}
Uk+1 = {i ∈ S | νUki (ck+1) > di}.

(6.27)
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1: procedure Iterative solution(M , d)
2: Set k = 0,
3: ck = max1≤i≤m d

2
i/πi, and Uk = {i : ckπi > di}

4: while |Uk| > 0 do
5: Calculate φ(νU

k
) and νU

k
(c) through (6.26)

6: k = k+ 1

7: Update ck and Uk using (6.27)
8: ν∗(c) = νU

k−1
(c) for c ∈ [ck, ck−1]

9: end while
10: end procedure

Figure 10: Iterative procedure to calculate ν∗(c).

Remark. Assume d = 1. If matrix M is doubly-stochastic, then the optimal protec-
tion results ν∗(c) = c/

√
m1. This finding is in line with the results of Section 6.2

and stresses that when agents are equally important with respect to the centrality
π, the optimal protection will be equal among all the agents.

Assume now that matrix M is doubly-stochastic and that d 6= 1. Then, the
iterative solution of Corollary 2 is much more complicated than (5.9). In particular,
values ck, k ≥ 1 are hidden and could, in general, be different from d2i/πi. The next
example wants to gain some insight into this specific issue.

Example. Consider an undirected cycle graph Cn with n nodes and described
by the adjacency matrix W ∈ Rn×n. Define M = (1− λ)(I − λP )−1, where P is
the normalized weight matrix and λ ∈ (0, 1). Given that Cn is regular, M results
doubly-stochastic and πi = 1/n.

Assume dj = 2 and di = 1 for all i 6= j. Figure 11 shows the behavior of the
optimal protection ν∗(c) constructed with the iterative solution shown in Figure
10 for an undirected cycle graph of n = 11 nodes and λ = 0.5. Parameter d is such
that d6 = 2 and di = 1, i 6= 6. Values of ν∗(c) when c = 16 are reported in the
following table:

i 1, 11 2, 10 3, 9 4, 8 5, 7 6

ν∗(c) 1.529 1.526 1.517 1.493 1.433 2

It is important to notice that protection on nodes 1 and 11, the two nodes most
far from node 6, is higher than protection on other nodes. More in general, pro-
tection is lower on nodes nearer to node 6. This phenomenon shows that the
difference in parameters highly influences the nature of ν∗(c).
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Figure 11: Optimal protection ν∗(c) on an undirected cycle graph of n = 11 nodes with
λ = 0.5, d6 = 2, and di = 1 for all i 6= 6.

6.3.2 Multiple connected components

We end this section by commenting on the generalization to the case of multi-
ple components of graph H. Specifically, we explicitly solve (6.13) in the uncon-
strained case ν ∈ Q0

c when H represents a graph composed of two weakly con-
nected components. We show that the solution to problem (6.19) is exactly equal
to the one presented in Proposition 4 and that we can generalize previous results.

As previously pointed out, when the graphH is composed of k ≥ 2 components,
matrix H results reducible and writable in the diagonal block form (6.16). Given
that Assumption 2 is not valid, the spectral radius of M [ν]−2M ′ could not results
simple for some ν ∈ Qc, and, therefore, we could not use item (iv) of Lemma 6.3.1
to calculate the derivative of ρ

(
M [ν]−2M ′

)
. However, given the particular block

diagonal structure of H , we show how to bypass this problem.
In order to keep the presentation as simple as possible, we assume that H is a

block diagonal matrix composed by two blocks

H :=

(
HS1 0

0 HS2

)
, (6.28)
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and that each subset Si has cardinality mi such that m1 +m2 = m. The generaliza-
tion to the case of H composed by k ≥ 2 diagonal blocks is straightforward.

Notice that also matrix M [ν]−2M ′ admits the block diagonal structure

M [ν]−2M ′ =

(
MS1 [νS1 ]

−2M ′S1 0

0 MS2 [νS2 ]
−2M ′S2

)
,

where νSi ∈ Rmi is the sub-vector obtained from ν by selecting elements νj , such
that j ∈ Si.

We now set some further notation. We will denote by ρj(νSj ) the largest eigen-
value of the block matrix MSi [νSi ]

−2M ′Si , noticing that ρ1(νS1) should be, in gen-
eral, different from ρ2(νS2). Moreover, we highlight that the largest eigenvalue of
matrix M [ν]−2M ′ could be defined as

φ(ν) = max{ρ1(νS1), ρ2(νS2)} .

Remark. It is important to notice that items (i) and (iii) of Lemma 6.3.1 are still
valid. We now comment items (ii) and (iv) of the same lemma.

(ii) Since M [ν]−2M ′ is a nonnegative matrix, the dominant eigenvalue of each
block is simple [10, Theorem 1.4]. Therefore, the algebraic multiplicity of
φ(ν) coincides with the number of times φ(ν) is the dominant eigenvalue
of a block. Given that M [ν]−2M ′ is symmetric, then the geometric multi-
plicity coincides with the algebraic multiplicity. This implies that φ(ν) is
semi-simple.

(iv) Even if we could not use item (iv) of Lemma 6.3.1 to calculate the deriva-
tive of φ(ν), we could calculate the derivative of ρj(νSj ) for each connected
component j. Formally,

∂

∂νi
ρj(νSj ) =

{
−2(MSjzSj )2/ν3i , if i ∈ Sj
0, otherwise

where zSj ∈ Rmj is the positive eigenvector associated to ρj(νSj ).

Since Qc is convex, Lemma 6.3.1 implies that the minimum of φ on such a set is
unique. We denote it by ν∗(c) to remember its dependence on the budget c.

We are now ready to solve the min-max problem related to the unconstrained
case (6.19). Again, from Lemma 6.3.1 we deduce that the minimum above is
unique, and we indicate it as ν0(c). An explicit form of ν0(c) is presented below.
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Proposition 6. Let H = M ′M ,M ∈ Rn×m satisfies the block diagonal structure (6.28).
For every c > 0, we have that

ν0(c) = c
√
π, min

ν∈Q0
c

φ(ν) = ρ1(c
√
πS1) = ρ2(c

√
πS2) =

1′H1

c
.

Proof. We introduce the slack variable ξ and we reformulate problem (6.19) as
follows

min
ξ∈R,ν∈Q0

c

ξ

s.t. ρj(νSj ) ≤ ξ, j = 1, 2 .
(6.29)

Therefore, we could use standard Lagrangian method to find the optimal solution
ν∗(c).

Monotonicity properties of φ (see relations (6.17)) imply that, necessarily, ‖ν0‖2(c) =
c. Using the explicit expression for the derivative of the objective function in (6.17)
and classical Lagrangian multipliers techniques, we obtain the following equa-
tions: 

−2βjν−3i (M ′SjzSj )
2
i + 2µ νi = 0, i ∈ Sj , j = 1, 2

‖ν‖2 = c,

βj (φj(ν)− ξ) = 0, j = 1, 2

MSj [ν]
−2M ′SjzSj = ρjzSj , j = 1, 2 ,

(6.30)

where βj , j = 1, 2 and µ are the Lagrangian multiplier, ρj = ρj(νSj ), j = 1, 2 is the
value function and zSj ∈ Rmj is the positive dominant eigenvector associated to
ρj . We proceed as follows.

Given that µ > 0, the first condition of (6.30) implies that β ∈ R2 result strictly
positive. Therefore, ρ1 = ρ2 = ξ.

Henceforth, the proof is analogous to the one of Proposition 4.

The most important fact of this proof is that ρ2 equals ρ1, that is, the optimal pro-
tection levels out the difference in the spectral radius of the two diagonal blocks.

The analysis proceeds in the same way by first solving problem (6.25), where
protections on the subset Uc 6= ∅ are unconstrained, i.e. νi > 0, i ∈ Uc, while
on the subset Wc are constrained to the given value d. Notice that if Uc = Si,
then component HSi could not be protected, and therefore we come back to the
case of only one connected component. From the mathematical point of view, if
ρi ≤ ρj , j 6= i then the optimal protection will minimize ρj until until ρi = ρj .

Result about monotonicity of ν∗(c) are still valid, and we can come out with an
iterative solution similar to (2).

We now consider an application of our result to the case of a network formed
by 3 connected components.
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Figure 12: Undirected network with n = 12 nodes composed by three connected compo-
nents.

6.3.3 Application: absolute displacement

Consider the network of n = 12 agents depicted in Figure 12. S1 represents the
undirected cycle graph of n = 3 nodes and we will call regular nodes 1, 2, and
3. S2 represents the undirected path graph of n = 4 nodes and we will call pathi
nodes 5 and 6 and pathex nodes 4 and 7. S3 represents the undirected star graph
of n = 5 nodes and we will call hub node 8 and leafs nodes 9, 10, 11, and 12.

Given the adjacency matrix W , we consider M = (1− λ)(I − λP )−1, where P is
the normalized weight matrix and λ ∈ (0, 1). As noticed before, matrix M results
row-stochastic. During the example we will assume that λ = 0.5 and d = 1.

Considering ω ∈ Rn and let K = ωω′. We recall that function Φ is called absolute
displacement in the context of the Friedkin-Johnsen dynamic. Then, (2) states the
exact iterative solution to calculate the optimal protection ν∗(c) against the worst
perturbation K that aims to maximally shift the absolute displacement in the
social network depicted in Figure 12.

Figure 13 shows the behavior of the optimal protection ν∗(c) calculated using
the iterative solution of Corollary 2. Notice that ν∗(c) intervenes in the network
without considering the partition of nodes in the three connected components.
The most important fact to highlight is that ν∗(c) starts intervening on the hub of
the star graph rather than regular agents of the cycle graph.
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Figure 13: Optimal protection ν∗(c) on an undirected graph of n = 12 composed by three
connected components: a cycle graph of n = 3 nodes, a path graph of n = 4

nodes, and a star graph of n = 5 nodes. We have assumed λ = 0.5 and d = 1.

6.4 distance from the average measure

In this section we present and partially solve the optimization problem

min
ν∈Qc

max
K∈Ω

Tr
(
[ν]−1K[ν]−1M ′(I − J)M

)
, (6.31)

that is, problem (6.1) restricted to the case of Y = I − J .
Similarly to the previous section, we will denote with H the matrix M ′M . Also,

in this section, we will work under Assumption 2, i.e. that matrix H is irreducible.
Given that this part is related to an ongoing problem, this assumption is helpful
to ensure that H, the weighted undirected graph associated with matrix H is
composed of only one connected component.

We also consider a normalization assumption on matrix M . In particular, we
assume that matrix M is row-stochastic. Even if this assumption removes total
generality to the model, a lot of applications, see for example Chapter 3, implicitly
define M as a row-stochastic matrix. Therefore, this normalization is in-line with
applicative contexts.
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For the convenience of presentation, it is useful to define the matrix

M̂ = (I − J)M .

It then follows that
Ĥ = M̂ ′M̂ ∈ Rm×m (6.32)

is a positive semi-definite symmetric matrix and is a rank-one update of matrix
M ′M . In fact, notice that we could write Ĥ as

Ĥ = H − n−1vv′ ,

where, in concordance with Section 6.2, we have put v = M ′1. Given that M is row-
stochastic, it results that the vector 1 is the eigenvector associated with eigenvalue
0. In fact,

Ĥ1 = M ′(I − J)M1 = M ′(I − J)1 = 01 .

Assumption 2 also implies that eigenvalue 0 has multiplicity one. In fact, the
matrix Ĥ results in rank m− 1, and only vectors of type α1,α ∈ R lay on the
kernel of Ĥ .

We recall that F(I−J) coincides with measure Ψ and, in this section, we reuse
this symbol to identify the objective function of (6.31). We define the function
ψ : Qc → R

ψ(ν) = max
K∈Ω

Ψ(ν,K), ν ∈ Qc . (6.33)

We will denote the spectrum of matrix A ∈ Rm×m with σ(A) = {σ1(A),σ2(A),
. . . ,σm(A)}, assuming a non-increasing order in eigenvalues σ1(A) ≥ · · · ≥ σm(A) ≥
0. The next result gathers an important fact on the function ψ.

Lemma 6.4.1. Let H = M ′M ,M ∈ Rn×m, M row-stochastic, satisfies Assumption 2.
Then, for every ν in Qc, we have

(i) ψ(ν) = ρ
(
[ν]−1Ĥ [ν]−1

)
= ρ

(
M̂ [ν]−2 M̂ ′

)
.

(ii) ψ(ν) is a semi-simple eigenvalue of [ν]−1Ĥ [ν]−1 .

(iii) ψ(ν) is convex in ν.

(iv) σ2
(
M [ν]−2M ′

)
≤ σ1

(
M̂ [ν]−2M̂ ′

)
.

Proof. Appendix 8.
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We now highlight important facts that arise in studying the largest eigenvalue
of matrix M̂ [ν]−2 M̂ ′. Consider ν in Qc and define the matrix function

Π : Qc → S+, Π(ν) = M̂ [ν]−2M̂ ′ ∈ Rn×n , (6.34)

and notice that matrix Π(ν) should be rewritten as

Π(ν) =
m∑
i=1

1

ν2i
M̂iM̂

′
i

that is a combination of symmetric matrices weighted by ν−2i . Given that matrix
Π depends on variable ν, it results that also its spectrum depends on ν. Therefore,
eigenvalues of Π(ν) are functions of ν and will be denoted with

σ(ν) = {σ1(ν),σ2(ν), . . . ,σm(ν)} , σi : Qc → R+ ,

assuming a non-increasing order

σ1(ν) ≥ σ2(ν) ≥ · · · ≥ σm(ν).

Notice that elements of Π(ν) are analytic in ν ∈ Rm
++, and therefore its eigenval-

ues result continuous. However, it is well known [33, 49, 53] that any eigenvalue
function σi may be non differentiable when it coalesces with others.

An example of this phenomenon is that of matrix A(x) = [x,−x] where x ∈ R.
Then σ2(x) = −|x| and σ1(x) = |x|. Both eigenvalues are not differentiable at
x = 0.

If σ1(ν) is simple for all ν ∈ Qc then it results also convex and differentiable. The
main problem in applying Perron-Frobenius theory, to show that σ1(ν) is simple,
is that Π(ν) has negative entries due to I − J . Therefore, it could happen that
σ1(ν) has multiplicity greater than one for some ν̄ ∈ Qc, i.e. σ1(ν̄) = · · · = σj(ν̄) >
σj+1(ν̄) and hence ψ(ν) results non-differentiable in ν̄.

In the next section, we analyze and specific case of problem

min
ν∈Qc

ψ(ν) ,

where we are able to overcome the problem of non-differentiability of ψ(ν).
We now introduce notation common to next part. Since Qc is convex, Lemma

6.4.1 implies that there exists a minimum of ψ. We denote by ν∗(c) a vector such
that

ψ(ν∗(c)) = min
ν∈Qc

ψ(ν)

to remember its dependence on the budget c.
Throughout the next sections, we will assume that d is proportional to the vector

of all ones, i.e. d = d1. These assumptions give us the possibility to better focus
on the network side more than the optimization part.
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6.4.1 Special case: polarization in the normalized Friedkin-Johnsen model

We now consider the special case of doubly-stochastic matrix M . Even if this case
seems too specific, we now show an example applied to the Friedkin-Johnsen
model that our analysis will comprehend. This setting is used in papers [25, 36,
39, 48], and is sometimes referred to as the normalized Friedkin-Johnsen model.

Example. Consider an undirected graph of n nodes described by the symmetric
weight matrix W ∈ Rn×n

+ . Consider Friedkin-Johnsen model (3.11) setting P =
[w]−1W (the normalized weight matrix of the graph (2.1)) and [λ] = [1 +w]−1[w],
where w = W1 is the degree vector. Then, matrix M = (I − [λ]P )−1(I − [λ])
becomes

M = (I + L)−1 ,

where L = [w] −W is the Laplacian matrix of the graph. Given that W repre-
sents an undirected graph, it results symmetric. Hence, (I + L)−1 is symmetric.
Moreover, given that L1 = 01, matrix M results stochastic and, consequently,
doubly-stochastic.

Given that we are at starting stage, we consider the homogeneous setting di =
d for all nodes. This assumption is motivated by the work [36] where authors
set the positivity constraint on the intervention, ν > 0. Using reasoning done in
Section 4.2, we notice that the case d = d1 comprehend also the case analyzed in
[36].

The following result is the most important of this section.

Theorem 6.4.2. Let H = M ′M ,M ∈ Rn×m, M doubly-stochastic, satisfies Assumption
2. Assume d = d1, d ∈ R++. Then, for every c ≥ ‖d‖2 we have

ν∗(c) =
c√
m

1, ψ(ν∗(c)) =

√
m

c
σ2 (H) . (6.35)

Proof. We will show that if ν is proportional to vector 1, then item (iv) of Lemma
6.4.1 holds at the equality.

Given that M is doubly-stochastic, then it results that

H1 = 1 .

Consider ν = 1 and compute as follows:

ρ
(
[ν]−1H̄ [ν]−1

)
= ρ

(
H − n−1M ′11′M

)
= ρ (H − J) .
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We now prove that ρ (H − J) is exactly equal to σ2(H). Given that 1 is the eigenvec-
tor ofH associated to the maximum eigenvalue 1, we could use result ([31][Theorem
2.1]). In particular, we could rewrite the spectrum of H̄ as

σ(H̄) =
{
σ1(H)− n−11′1,σ2(H), . . . ,σm(H)

}
.

Given that H is stochastic we could conclude that

σ1(H)− n−11′1 = 0 ,

and therefore σ2(H) = σ1(H̄).
We now have to rescale the vector 1 such that it belongs to Qc. Consider α > 0.

We have to set α such that α21′1 ≤ c and α1 ≥ 1. Given that ψ is non-increasing in
ν the last inequality results an equality and therefore α = c/

√
m. The assumption

on the nature of d ensures that c/m ≥ d. Therefore, if ν = c/
√
m1 and M is

doubly-stochastic then

σ2
(
M [ν]−2M ′

)
= σ1

(
M̂ [ν]−2M̂ ′

)
.

Remark. Similarly to previous sections, given thatM is assumed doubly-stochastic,
the optimal solution ν∗(c) results independent of the network. However, ψ(ν∗(c))
depends on network topology through the second highest eigenvalue of matrix
M ′M .

Differently from ρ(M ′M), which is equal to 1 for a doubly-stochastic matrix M ,
σ2(M ′M) differs, in general, among regular networks. Therefore, it is possible to
classify networks’ structure and study which topology shows lower values of this
quantity.
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7.1 conclusion

In this dissertation, we have proposed and discussed a general formulation of
an adversarial min-max problem on linear network systems. The two players of
the problem, the attacker and the defender, could manipulate the exogenous in-
put vector in order to shift in their desired way a specific performance measure,
formulated as a quadratic form of the equilibrium configuration of the system.
We have studied different scenarios of the problem, varying the desired perfor-
mance (e.g. aggregate volatility, absolute displacement, polarization, etc.) and the
subspace of admissible attack, formalized as a subsets of the set of symmetric pos-
itive semi-definite matrices. Emerging from the analysis are novel network cen-
trality measures that indicate the most influential agents on which the defender
should mainly intervene.

In the first part of the thesis, composed of Chapter 3 and Chapter 4, we have
formalized the adversarial min-max problem using a general theory that has the
credit of embedding many applicative contexts based on linear network models.
The main message coming from this part is the formulation of all quadratic perfor-
mances in an unified way that shows the dependence on the two leading objects
of our analysis: the vector of protections ν and the matrix of attack K. On the one
hand, our approach can be used to provide general results for those classes of op-
timization problems and, on the other hand, can be tailored to suit the specificity
of the various applications.

In the second part of the thesis, we have adapted our general theory to rep-
resent some specific scenarios. In Chapter 5, we have analyzed and solved the
adversarial min-max problem by assuming a diagonal matrix K, which studies
the specific case of independent perturbations among agents. Within this setting,
we have proved that all the performances considered in applications result in a
similar form of the external minimization problem and, therefore, could be ana-
lyzed using a general formulation. Our main contributions are the followings.

• We have entirely characterized the optimal perturbation K(ν) of the attacker
and the optimal protection ν∗(c) of the defender. The solutions suggest that
the attacker has to focus all the energy on nodes that are most central and
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less protected. On the contrary, the defender has to level out diversity in
network centralities to make appear agents equally important to the attacker.

• We have exposed sufficient conditions to detect the structure of the optimal
protection. The structure of the optimums shows how the optimal protec-
tions ν∗(c) are generally concentrated on a proper subset of nodes. For a
fixed budget value c, the optimal protection could be analytically character-
ized by the water-level function and the centrality vector π that resumes the
network topology and depends on the specific performance. In particular,
the defender has to exhibit a ’water-filling’ structure that levels out the dif-
ference created by the network topology. When the lower bound d is equal
for all the agents, the subset of nodes on which ν∗(c) is active is formed by
the most important agents that satisfy a condition that depends on the avail-
able budget . The optimal intervention becomes much more complicated
when the lower bound is heterogeneous among agents.

• We have provided a sensitivity analysis of the optimal protection. The avail-
able budget level c generates different regimes in which the subset of agents
to be protected changes. More precisely, the defender has to invest its mitiga-
tion resources on all nodes if the available budget is sufficiently high or on
just a subset of nodes otherwise. Lower is the budget, and less is the number
of agents that could be protected. Moreover, the values of c that generate the
low and high budget regimes depend on the network topology.

• Centralities that emerged considering the various performance measures are
not interchangeable. The most central agent concerning centrality v is not, in
general, the most central agent with respect to other centralities ` and p.
Therefore the subset of agents on which the defender should mainly inter-
vene changes.

In Chapter 6, we have analyzed the adversarial min-max problem assuming
only that K belongs to the set of symmetric positive semi-definite matrices. Simi-
larly to the previous chapter, we proved that the external minimization problem
should be formulated in a unified form: the spectral radius of a matrix that de-
pends on the specific performance. However, the behavior of the spectral radius
considerably changes with respect to the three performance measures Γ,Φ, and
Ψ. For this main reason, we have analyzed the three performance separately, ob-
taining different results. Our main contributions are the followings.

• For the performance γ, we have explicitly characterized the min-max prob-
lem’s solution.. In particular, we have shown that the spectral radius related



7.2 current and future research 75

to this measure results in a separable function in ν. This simplification al-
lows studying the external minimization problem using similar tools used
in Chapter 5. The centrality measure that naturally emerges from this anal-
ysis is the Bonacich centrality, and the optimal intervention of the defender
should be derived in an explicit form. We have shown that the optimal inter-
ventions ν∗(c) are generally concentrated on a proper subset of nodes and
that observations of Chapter 5 are still valid.

• We completely characterize an explicit recursive solution of the min-max
problem related to performance ψ. For this more challenging problem, we
have proposed a new iterative solution that exactly solves the problem. For
the particular case of the high budget regime, we also gave an exact solution
proportional to a new centrality measure. Also, in this setting, the optimal
solution we have found results concentrated on a subset of nodes. However,
no one of the centralities v, `, or p precisely describes which agents to protect,
and, therefore, our result also gives new insights in this direction.

• For the performance ψ, we have entirely characterized the solution of the
specific problem of doubly-stochastic matrix M . Even if this setting loses
in generality, it is the exact solution to many problems encountered in the
literature of Friedkin-Johnsen dynamic models.

To sum up, in this dissertation, we have provided results that completely charac-
terize the structure of the optimal intervention of adversarial min-max problems
that consider quadratic performances of the equilibrium state of linear network
model that arises in several applications and attracted growing attention in the
literature over the past few years. Our results about the structure of the optimal
protection also shed new light on how centrality measures naturally arise in tar-
geting problems and how the correlation patterns of the perturbation complicate
the intervention.

7.2 current and future research

There are several interesting directions in which we could extend and generalize
our research.

Primarily, we want complete the analysis of the adversarial min-max problem
related to the performance measure Γ. In particular, we would like to extend the
obtained result also to not doubly-stochastic matrix M and the general case of het-
erogeneous lower bounds. We highlight that obtaining a result for this optimiza-
tion problem could have an impact on two fields: the dynamic opinion field and
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the eigenvalues optimization field. As we have already presented, diminishing the
polarization in the social context is of increasing importance, and a growing liter-
ature is working on it [36]. In the field of eigenvalues optimization, most of the
literature is focused on producing practical and general algorithms [16]. However,
most of these numerical methods do not give information on the structure of the
optimal solutions and do not perform fast when the order of the matrix, i.e. the
size of the network, increases. We hope our future results could gain some insight
into the structure of the optimal intervention, even in problems where an iterative
solution is challenging to obtain.

Another interesting line of research would be undertaking a more formal ap-
proach to the adversarial min-max problem. In this dissertation, to maintain a
simple approach, we have focused our attention only on linear constraints and
an objective function that depends on the protections as 1/ν. Much more compli-
cated functions, both on constraints and the objective, could be considered and
are already present in the literature [37]. In particular, a possible direction could
be to undertake a more formal approach where properties of constraint and ob-
jective functions are related to the structure of the solution. In ongoing work, we
have obtained general results in the case of separable continuous functions that
are convex increasing in the constraint and concave decreasing in the objective.
We are still studying the much more general case, i.e. when variables could be
paired.

Related to this last part, another interesting problem we are studying is the
targeting problem of optimal protections assuming that matrix K is given. This
problem could be cast in the setting where perturbations are stochastic vectors and
the defender knows the covariance matrix. Within this setting, the objective func-
tion becomes a quadratic form where the matrix of interest is the Schur product
of a matrix representing the network and the covariance matrix of perturbations.
Given that the problem is convex in the protections, many algorithms could be
used to find the optimal solution. However, the main issue is finding a relation
between network topology and optimal protection. More precisely, we are inves-
tigating a measure that could couple together the importance of a node and the
action of an external perturbation.

The last research direction we are undertaking is the sensitivity analysis in the
parameter d. As we have seen in the examples presented in this dissertation, the
heterogeneity in d significantly impacts the structure of the optimal solution. The
most crucial case to cite is when the network is regular. We have shown that even
in this case, the optimal solution does not act on all the agents equally, and it
seems that also the difference in parameters is propagated through the network.
Similarly to the analysis we have done for the budget level c, our next step is to
analyze this phenomenon by drawing a sensitivity analysis.
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Proof of Lemma 6.3.1

Proof. Consider ν in Qc.
(i) The first identity follows from Lemma 4.3.1. The second one follows from the

property that non-zero eigenvalues of the product of two matrices are invariant
with respect the order of the factors.

(ii) It follows from Assumption 2 that [ν]−1H [ν]−1 is irreducible. Since it is a
nonnegative matrix, its dominant eigenvalue is simple [10, Theorem 1.4].

(iii) To prove the third item consider the function f : Rn
+ → R given by

f(s) := ρ
(
M [s]M ′

)
. (8.1)

Since we can express
f(s) = max

y∈Rn:‖y‖2=1
‖M [s]M ′y‖2

it follows that f(s), being the max of convex functions, is convex. The same expres-
sion yields, since M has all non-negative elements and the maximum is reached by
a non-negative vector k, that f(s) is non decreasing with respect to the component-
wise order in Rn

+.
We now prove convexity of φ(ν). Notice that we can write φ(ν) = f(ν−2) where

we indicate with ν−2 the vector of component-wise inversion of the squares of
elements of vector ν. Fix now ν1, ν2 ∈ Rn

+ and λ ∈ [0, 1] and notice that, since the
inversion function ν 7→ ν−2 is convex on R+,

(λν1 + (1− λ)ν2)−2 ≤ λν−21 + (1− λ)ν−22 (8.2)

component-wise. We now compute as follows

φ(λν1 + (1− λ)ν2) = f((λν1 + (1− λ)ν2)−2)
≤ f(λν−21 + (1− λ)ν−22 )

≤ λf(ν−21 ) + (1− λ)f(ν−22 )

= λφ(ν1) + (1− λ)φ(ν2) ,

where in the first inequality we have used (8.9) and the monotonicity of f and
in the second inequality the convexity of f . Strict convexity follows from the fact
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that for every i = 1, . . . ,n, there exists h such that Mih > 0. Then the function f is
strictly increasing and thus the first inequality is strict.

(iv) follows by applying Implicit function theorem and explicit computation
could be found in [47].

Proof of Proposition 5

Proof. Proof is analogous to the one of Proposition 4. We notice that also in this
case, the optimum will lay on the boundary ‖ν‖2 = c. We write (ν = ν̃, d) and we
similarly derive first order conditions.

−2ν̃−3i (M ′z)2i + 2µ ν̃i = 0 i ∈ U
‖ν̃‖2 = c− ‖d‖2
MU [ν̃]

−2M ′Uz +MW [d]−2M ′Wz = ρz .

(8.3)

The first set of equations yield

µ1/2[ν̃]21 = M ′Uz . (8.4)

Substituting in the third equation, we obtain

µ1/2MU1 +MW [d]−2M ′Wz = ρz . (8.5)

Notice now that, since U 6= ∅, (MW [d]−2M ′W)ij ≤ (M [ν]−2M ′)ij for all i and j

with strict inequality on the diagonal terms. This implies that ρ(MW [d]−2M ′W) <

ρ(M [ν]−2M ′) = ρ (for instance representing the spectral radius as norm matrix,
details can be found in [42, Theorem 8.1.18]. Consequently,

z = µ1/2(ρI −MW [d]−2M ′W)−1MU1. (8.6)

Relation (8.6) together with (8.4) yield the thesis.

Proof of Theorem 6.3.3

Before proving Theorem 6.3.3, we state and proof a simple lemma.

Lemma 8.0.1. Consider the solution νU (c) of problem (6.25). For every i ∈ U , νUi (c) is
strictly increasing in c.

Proof. Put νU (c) = (ν̃, d). From the first relation of (6.26), we can write

ν̃ =
∞∑
j=0

1

(φ(νU (c)))j+1
M ′U

(
MW [d]−2M ′W

)j
MU1 .
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Since the value function φ(νU (c)) is strictly decreasing in c, the result is proven.

We are now ready to prove Theorem 6.3.3.

Proof. We start with continuity. Fix c ≥ ‖d‖2 and consider a sequence ck → c

(with ck ≥ ‖d‖2) such that ν∗(ck) → ν̄ for k → +∞. Consider now any sequence
ν̄k ∈ Qck such that ν̄k → ν∗(c) for k → +∞. Since φ(ν) is continuous, we have that
φ(ν∗(ck)) → φ(ν̄) and φ(ν̄k) → φ(ν∗(c)). Since by construction φ(ν∗(ck)) ≤ φ(ν̄k)
for every k, it holds φ(ν̄) ≤ φ(ν∗(c)) and thus φ(ν̄) = φ(ν∗(c)). Since φ(ν) is
strictly convex, it follows that ν̄ = ν∗(c). This proves continuity.

We then prove monotonicity. Given any c̄ ≥ ‖d‖2, we now show thatWc = S\Uc
is locally constant in a left and, respectively, in a right neighborhood of c̄. To this
aim, we consider

s−c̄ = lim inf
c→c̄−

|Wc| s+c̄ = lim inf
c→c̄+

|Wc|.

Since s−c̄ and s+c̄ are integer-valued, there exists δ > 0 such that

|Wc| ≥ s−c̄ ∀c ∈ [c̄− δ, c̄[
|Wc| ≥ s+c̄ ∀c ∈]c̄, c̄+ δ].

(8.7)

Consider any c1 ∈ [c̄− δ, c̄[ such that |Wc1 | = s−c̄ . Since ν∗(c) is continuous, there
exists c2 > c1 such that Wc ⊆ Wc1 for every c ∈ [c1, c2[. Suppose we have chosen
the supremum of such c2 ≤ c̄. By the way c1 was chosen and the first inequality
in (8.7), we actually have that Wc = Wc1 for c ∈ [c1, c2[. Since Wc is constant
on [c1, c2[, it follows by continuity that Wc2 ⊇ Wc1 . Applying monotonicity of
Lemma 8.0.1 we thus haveWc2 =Wc1 . If c2 < c̄, repeating the same argument, we
could further extend the interval [c1, c2[ on the right whereWc remains constant in
contradiction with the way c2 was chosen. Therefore c2 = c̄ and we have proven
that Wc is constant on [c1, c̄]. We now consider the right neighborhood. We fix
any c1 ∈]c̄, c̄+ δ[ such that |Wc1| = s+c̄ and arguing as above we determine an
interval [c1, c2] on which Wc remains constant. By the definition of s+c̄ , we can fix
c1 arbitrarily close to c̄ and this proves that Wc is constant on an interval ]c̄, c2].
Lemma 8.0.1 guarantees that on the two intervals [c1, c̄] and ]c̄, c2] the optimal
solution ν∗(c) is non-decreasing. Being continuous, it is non-decreasing in the
neighborhood [c1, c2] of c̄. Finally, being locally non-decreasing and continuous,
ν∗(c) is globally non-decreasing on [‖d‖2,+∞[.

Proof of Lemma 6.4.1

Proof. Consider ν ∈ Qc.
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(i) The first identity follows from Lemma 4.3.1. The second one follows from the
property that non-zero eigenvalues of the product of two matrices are invariant
with respect the order of the factors and that matrix (I −n−111′) is symmetric and
idempotent.

(ii) It follows from Assumption 2 that [ν]−1H [ν]−1 is positive definite and hence
has full rank m. Given that matrix [ν]−1vv′[ν]−1 has rank one then

rank
(
[ν]−1Ĥ [ν]−1

)
≥ rank

(
[ν]−1H [ν]−1

)
− rank

(
[ν]−1vv′[ν]−1

)
= m− 1 .

Noticing that the vector ν belongs to the kernel of [ν]−1Ĥ [ν]−1 we can conclude
that each eigenvalue of this matrix has geometric multiplicity equal to algebraic
multiplicity, and hence is semi-simple.

(iii) To prove the third item consider the function f : Rm
+ → R given by

f(s) := ρ
(
M̂ [s]M̂ ′

)
. (8.8)

Since we can express

f(s) = max
y∈Rn:‖y‖2=1

‖[s]1/2M̂ ′y‖2

it follows that f(s), being the max of convex functions, is convex. Notice that
f(s) is non decreasing with respect to the component-wise order in Rm

+ . In fact,
consider s′ = s+ ε with εi ≥ 0. Then

f(s′) = f(s+ ε)

= ρ
(
M̂ [s+ ε] M̂ ′

)
= ρ

(
M̂ ([s] + [ε]) M̂ ′

)
= ρ

(
M̂ [s] M̂ ′ + M̂ [ε] M̂ ′

)
.

Given that the matrix M̂ [ε] M̂ ′ is positive semi-definite we could apply ([42][Corollary
4.3.3.]) to ensures that

f(s) = ρ
(
M̂ [s] M̂ ′

)
≤ ρ

(
M̂ [s] M̂ ′ + M̂ [ε] M̂ ′

)
= f(s′) .

We now prove convexity of ψ(ν). Notice that we can write ψ(ν) = f(ν−2) where
we indicate with ν−2 the vector of component-wise inversion of the vector ν. Fix
now ν1, ν2 ∈ Rm

++ and λ ∈ [0, 1] and notice that, since the inversion function
ν 7→ ν−2 is convex on R++,

(λν1 + (1− λ)ν2)−2 ≤ λν−21 + (1− λ)ν−22 (8.9)
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component-wise. We now compute as follows

ψ(λν1 + (1− λ)ν2) = f((λν1 + (1− λ)ν2)−2)
≤ f(λν−21 + (1− λ)ν−22 )

≤ λf(ν−21 ) + (1− λ)f(ν−22 )

= λψ(ν1) + (1− λ)ψ(ν2) ,

where in the first inequality we have used (8.9) and the monotonicity of f and in
the second inequality the convexity of f .

(iv) The last properties follows by ([42][Corollary 4.3.9.]).
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