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Abstract

The topic of this dissertation falls within channel coding theory, and consists
in the analysis of a particular class of turbo-like codes, defined by a multiple
concatenation of an arbitrary outer encoder with m truncated convolutional
encoders through uniform random permutations.

Fixed the number of inner encoders, structural properties of these coding
schemes are studied when the truncation length goes to infinity.

As a first step in this study, we focus on truncated convolutional encoders,
which are the constituent elements of turbo concatenations. We present a de-
tailed analysis of the related weight distribution functions and of their exponen-
tial growth rate. In particular, the weight distribution functions are expressed
as coefficients of the generating function of error events associated with a min-
imal realization of the encoder. Although these expressions can be computed
for relatively small truncation lengths, they become prohibitively complex to
compute as truncation lengths and weights increase. Fortunately, a very ac-
curate approximation can be derived using the Multidimensional Saddle Point
method. This approximation is substantially easier to evaluate and is used to
obtain an expression for the asymptotic spectral function and to prove continu-
ity and concavity. Finally, this approach is able to guarantee that the sequence
of exponential growth rate converges uniformly to the asymptotic limit and to
estimate the speed of this convergence.

Building upon these results, we show that for multiple concatenated coding
schemes the average distance spectra can be obtained through the analysis of
a dynamical system (dependent on the inner encoder) with initial condition
equal to the asymptotic spectra of the outer encoder. Moreover, they are equal
to 0 below a threshold distance δm and positive beyond it. Then, minimum
distances are shown to scale linearly in the code-length with probability one,
and the asymptotic normalized minimum distance to be exactly provided by
δm. Under a very mild condition on the outer encoder asymptotic spectral
functions form a uniformly convergent sequence of functions. Their limit is
the maximum between 0 and the average spectral shape of the random linear
coding ensemble. As a consequence, the threshold sequence δm converges to
the Gilbert-Varshamov distance, the best lower bound on the largest minimum
distance achievable by a code.
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ii Abstract

Finally, we consider another family of binary codes that can be seen both as
particular systematic serial turbo codes and as structured Low-Density Parity-
Check codes. Using similar techniques, we analyze minimum distances and
prove coding theorems, already obtained for multiple serially concatenated
codes, even in this new setting. Summarizing theoretical results, we describe
some guidelines to design asymptotically good coding schemes.

Keywords: Asymptotic spectral functions, convolutional encoders, Gilbert–
Varshamov distance, multiple serially concatenated codes, turbo like-codes, uni-
form random permutations.
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Introduction 1
Brief—This chapter gives an introductory view of the motivations
that lead to begin this thesis project. A brief introduction about
the main subject that this thesis deals with, namely channel coding
theory, and a brief state of the art about the relevant topics are
included too. This chapter should help the reader to understand
what are the phenomena, the mathematical tools addressed and the
main contributions in this thesis.

1.1 Outline of the chapter

The purpose of the present chapter is to give an overview of the dissertation.
This is also an opportunity to loosely define some fundamental notions and
some vocabulary.

Section 1.2 introduces the concepts of channel coding, the most popular
coding schemes, and some ways to compare them. Section 1.3 deals with serial
turbo-coding schemes: it broadly reviews problems and solutions known in
the literature (more detailed literature reviews per topic can be found in the
main body of the dissertation) and summarizes the main contributions in this
document. Section 1.4 illustrates the organization of next chapters. A list
of publications presenting the results of this work concludes the chapter (see
Section 1.5).

1.2 Coding theory

1.2.1 State of the art

Aim of communication engineering is to design systems for efficient and reli-
able transmission of data over a noisy channel. A channel is a physical medium
linking a source and a receiver which are separated in space or perhaps in time.

1



2 Introduction

Typically, because of noise, the received message is a distorted version of the
corresponding source message. The receiver needs to estimate the transmit-
ted message starting from the observations of the channel output, by using
some decoding strategies. Channel coding theory is the study of how to add
redundancy to a source message so it can be decoded correctly, even when the
communication channel is noisy.

Figure 1.1 depicts a generic coding–decoding scheme. The source emits
a message of length k, called information word or information sequence. We
assume from now on that each possible message k-tuple is as likely to be selected
for broadcast as any other.

The encoder maps information words into binary messages of length n (with
n > k) deterministically. These blocks are the codewords or code sequences.
From the assumption of uniform prior on the source message we clearly have
that each codeword from the code (the set of all possible codewords) is as likely
to be transmitted as any other.

The message is sent on a memoryless channel, which corrupts the sequence
with random noise. The channel has no memory, in the sense that an error in
one symbol does not affect the reliability of its neighboring symbols.

Finally, the decoder receives from the channel an n-tuple of symbols and
estimates the transmitted message. The goodness of a coding–decoding scheme
is measured by the probability that the decoded sequence is different from the
transmitted message.

Source
k-tuple n-tuple

Encoder Noisy channel
n-tuple

Decoder

Figure 1.1: Mathematical model for communication. First, the encoder adds
some redundancy to the source message. The resulting codeword is sent over the
channel. Finally, the decoder estimates the original message.

It is clear that error probability can be made arbitrarily small by adding
more and more redundancy, and letting the ratio of the lengths of information
words and corresponding codewords (called rate R = k/n) go to zero. However,
to be efficient, the transfer of information must not require a prohibitive amount
of time and effort. A more efficient and reliable approach to the problem is
contained in the Shannon’s pioneering works [1–3]. Shannon points out that the
error probability can be made arbitrarily small by adding bounded redundancy
(without sacrificing data rates), at the price of increasing the code complexity.

The novelty of his work consists in the use of the probabilistic method for
proving coding theorems [4]. In fact, the analysis concerns an ensemble of codes,
namely sets of codes equipped with a probability measure, instead of consider-
ing single coding schemes. Through this probabilistic approach, it is showed
that, whenever the design rate is below a threshold (capacity of the chan-
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nel) and under the assumption of maximum likelihood decoding (MLD, which
prescribes to choose the most likely codeword), the average error probability
vanishes in the limit of large codewords lengths with exponential decaying error
rate. Unfortunately, Shannon’s theorem does not give any practical technique
to construct a good code. The averaging technique, used in the proof, suggests
to choose 2k codewords of length n randomly. However random constructed
codes have unfeasible complexity in the decoding process, which requires expo-
nential time in the codewords length. After Shannon, coding theory attempts
to realize the promise of these bounds by models which are constructed mainly
through algebraic techniques.

In order to define codes with an efficient encoding and decoding complexity,
we have to add more structure to the codespace. Block linear codes and con-
volutional codes are examples of codes based on a simple algebraic structure.

Block linear codes are defined as the image of a generator matrix or as the
kernel of a parity check matrix (called also syndrome matrix). The reader is
referred to [5] for further details.

Convolutional codes and trellis codes are encoders with memory [6–8]. Con-
volutional encoders can be seen as finite-state machines with linear update of
the state and of the output. The code sequence that emerges from the encoder
depends upon previous message symbols as well as the present ones. Moreover,
the code string emerges continuously rather than segmented into unrelated
blocks.

However, performance of these structured codes are far away from the the-
oretical limits, which remained practically unreachable for a long time.

A major breakthrough in the discipline comes with the introduction of turbo
codes, introduced in 1993 in [9, 10], and Low-Density Parity-Check (LDPC)
codes, introduced in 1963 by Gallager [11] and deeply studied after re-discovering
[12] in 1995. In particular, the amazing success comes from a good balance in
the coding scheme between enough randomness —in order to get good perfor-
mances (close to that of randomly constructed codes)— and enough structure
—to be exploited by a suitable low-complexity decoding algorithm, known as
belief propagation (BP) [13, 14].

Classical turbo codes are obtained by concatenating two simple convolu-
tional encoders in a parallel way, linked by an interleaver: the information
bits to the first encoder are scrambled by the interleaver before entering the
second one; then codewords are obtained by juxtaposing the output bits of
both encoders. This construction can be generalized to any number of con-
stituent codes. The iterative algorithm, which decodes each code separately
and exchange information from one decoder to the other, reaches good perfor-
mance, close to the theoretical limits, with complexity comparable to that of
the constituent codes [15, 16].

Since the introduction of the classical turbo codes, many variations of the
basic scheme have been proposed in the literature. Serially concatenated codes
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through interleaver are introduced in [17]. Moreover, the use of these coding
schemes in combination with an ad-hoc iterative decoding makes them inter-
esting from an applicative point of view. Interconnections of more than two
encoders through more than one interleaver both in a serial structure or in a
mixed serial and parallel way, known as turbo-like schemes, have been consid-
ered in [18–20].

LDPC codes are error-correcting codes defined in terms of a sparse matrix
(the parity-check matrix), i.e. binary matrix containing a small amount of non-
zero entries. Typically, by very few non-zero entries we mean that, as the
codeword length increases, the number of non-zero entries grows linearly with
it. LDPC matrix can be represented by a sparse bipartite graph, i.e., a graph
with very few edges.

Although LDPC codes achieve good performance under ML-decoding, it
can be shown that in the worst-case, ML decoding of an LDPC code is NP-
hard, so ML decoding of LDPC codes is likely to be quite complex. By exploit-
ing the graphical representation of LDPC codes, a low complexity suboptimal
message-passing algorithm for decoding is proposed in [11]. At each round of
the algorithm messages are passed from vertices in the factor graph to their
neighbors. These messages are updated iteratively using local update rules (by
local, we mean that the updated message leaving a vertex depends only on
the messages coming into that vertex at the previous iteration). The reader is
referred to [21] for a more detailed exposition of message-passing algorithms.

Despite their linear decoding complexity, the encoding process of LDPC
codes requires in general the multiplication of the input vector times the gener-
ating matrix, which is not sparse. There is no known linear time algorithm for
encoding a general LDPC code (LDPC codes are linear codes, so these codes
must be encodable in polynomial time). On the contrary, for turbo-like codes,
the constituent encoders are usually convolutional encoders, whose encoding
complexity is linear in the length.

To improve the encoding complexity, one can consider codes that share
many properties with LDPC codes, but which also have additional structure
(called structured LDPC). Some successful constructions are Repeat-Accumulate
codes and their generalization, the Irregular Repeat-Accumulate (IRA) codes
introduced in [22, 23]. This class of codes can be interpreted as serial turbo
scheme, obtained by coupling an outer low-density generator matrix (LDGM)
code with an inner convolutional encoder. As it happens for turbo codes, the
encoding process requires linear time. At the same time, the graphical struc-
ture of these codes looks similar to that of LDPC codes, so practical decoding
algorithms can be used.

There are different ways to compare coding schemes and different criteria
can be used to optimize their performance. On the one side, analysis can
focus on intrinsic properties of the codes, and on the other side on properties
of decoding strategies. In this dissertation we focus on the first approach,
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by using the minimum distance as fundamental design parameter. Most of
the results of this thesis concern the minimum distance analysis of turbo-code
ensembles.

1.2.2 Design criteria: minimum distance analysis

Much of classical coding theory is aimed at the construction of codes with
large minimum distance. Minimum distance is defined as the smallest distance
between distinct codewords, measured by Hamming distance (i.e. number of
positions in which two sequences differ). The minimum distance of a code
gives a measure of how good it is at detecting and correcting errors, since a
code with minimum distance d can detect up to d − 1 errors or correct up to
⌊(d − 1)/2⌋ errors in any codeword. Moreover, minimum distance dominates
the ML error probability at high signal-to-noise ratio (SNR). The fundamental
idea to construct good codes is to separate as much as possible its codewords:
codewords which are far apart (in the Hamming distance sense) among each
other will have small probability of being mutually equivocated, when trans-
mitted over a noisy channel. In general, different codes can be compared in
terms of their tradeoff between rate and minimum distance, and design criteria
can be optimized. In the case of binary linear encoders the minimum distance
coincides with minimum Hamming weight of their non-null codewords (i.e. the
number of non-zero elements in the sequence). From now on we will consider
to encode the information with a linear encoder.

When assuming a maximum likelihood decoding, the performance is also
influenced by code sequences with higher weight. Another interesting study of
the intrinsic properties of codes concerns the weight distribution. The weight
enumerators of a binary linear code specify the number of words with a given
input and output Hamming weight. They are the main ingredient of all expres-
sions estimating error probabilities and characterize the correction capability
of the code. The estimation of weight distributions of codes is a crucial issue
in coding theory and there exists an extensive literature on bounds on weight
distributions and on their use. We refer the reader to [24, 25]. A particular
relevant part is to estimate the spectral function of weight enumerators, namely
their exponential growth rate when the code length goes to infinity. Spectral
functions provide important asymptotic information on the codes, including
their minimum distances.

In order to construct codes achieving Shannon limit, it is mandatory to
ensure that their minimum distance does not remain bounded as codewords
length grows. Moreover, if we want to design codes with exponential decay-
ing error probability rate, minimum distance has to grow at least linearly in
codewords length. A sequence of codes of increasing length is called an asymp-
totically good code if the message length and the minimum distance of the codes
grows linearly with the codewords length. Codes for which minimum distances
do not grow linearly with the code length are called asymptotically bad.
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Despite decades of research the best trade-off between rate and distance
is unknown for binary codes. For fixed rate, a lower bound on the achievable
minimum Hamming distance of binary codes is given by Gilbert and Varshamov
bound [26] and then improved in [27,28]. The proof of this bound is based on a
greedy algorithm (with exponential complexity in the code length) to construct
such a code.

It is well-known that a random linear code almost matches the GV-bound
with high probability, so such linear codes exist in abundance [29, 30]. Then,
we could in principle pick a random linear code and then check its minimum
distance. However, the random coding ensemble is only of theoretical interest.
Finding a deterministic polynomial time construction of a code that meets the
GV bound remains an open question.

While a random constructed codes have little structure, there are more
structured ensemble of linear codes, which meet the GV-bound asymptoti-
cally. Example are binary linear concatenated codes with Reed-Solomon outer
codes [31] and random double circulant codes, introduced by Kasami in [32].

A huge literature focuses on the study of the minimum distance distribution
of turbo-like codes, LDPC codes with their variants. In general, the minimum
distance analysis of these codes is not a trivial issue. However, it has been
realized that the probabilistic method is useful to prove coding theorems. In
order to prove the existence of a coding scheme with certain properties, a
probability space is constructed (code ensemble) and then it is shown that a
randomly chosen code from this space satisfies the desired properties with high
probability.

For turbo like codes minimum distance distribution is studied by considering
a uniform probability distribution over the set of all permutations (uniform
interleavers). Results along these lines are in [33–38]. In particular for classical
turbo codes minimum distances can grow at most logarithmically with the code
length, while for classical serial concatenated codes (just two convolutional
encoders interconnected with an interleaver) better scaling laws of minimum
distances can be achieved (close to linear).

The probabilistic method is used also in the analysis of LDPC codes, as
done for turbo-like coding schemes. The classical family of LDPC, considered
by Gallager, has a parity-check matrix chosen uniformly at random among all
matrices with fixed number of ones per each row and column. Irregular families
have been then introduced in [39]. For LDPC codes, the study of the minimum
distance has been considered in [39–43]. In particular, the growth rate of the
minimum distance, i.e., whether this growth rate is linear in the code length
or merely sublinear, depends exlusively on a quantity which is related to the
distribution of ones in the parity-check matrix.
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1.3 Multiple serial turbo-coding ensembles

The topic of this thesis falls within classical channel coding theory, and consists
in the analysis of a particular class of turbo-like codes, defined by a multiple
concatenation of an arbitrary outer encoder with m truncated convolutional
encoders (block encoders obtained by considering the inputs and the output
supported in N trellis steps) through uniform random permutations. This the-
sis mainly consists in the development of mathematical tools to study asymp-
totic properties of average weight distribution and repartition function of the
minimum normalized distance.

1.3.1 Previous literature

In the theoretical analysis of the minimum distance distribution of multiple
serially concatenated codes we can distinguish two main lines: on the one side,
we take the truncation length N fixed and we let m go to infinity; on the other
side, we study the minimum distance as a function of code length for a finite
number of interconnections in the serial structure.

Using the first approach, H. Pfister and P. Siegel [44] undertake a first
analysis of average output weight enumerating function. In particular, they
show that these functions converge to that one of the random linear coding
ensemble. In Chapter 4 we will prove that this study implies that there exists a
sequence of asymptotically good codes in the ensemble with minimum distance
close to the GV-bound but it does not guarantee that this happens for all codes
in the ensemble. This difficulty is mathematically due to the fact that the two
limits for m→ ∞ and n→ ∞ can not be interchanged automatically.

In this dissertation, we will focus on the second approach.
The case with m = 1, which encompasses the serial turbo scheme (just two

convolutional codes interconnected by an interleaver [17]), is analyzed in [36].
There, it is proved that such codes are asymptotically bad: typical minimum
distance grows only sub-linearly in the codewords length, close to linear by
picking an outer code with large free distance.

The case with m ≥ 2 includes Repeat multiple-Accumulate codes (RAm)
and [20, 45, 46] and Hamming double-Accumulate codes (HA2) [47]. In [37, 46]
it is proved that Repeat/Convolutional double-accumulate codes are asymptot-
ically good and a lower bound on the minimum distance is derived. Our work
is largely motivated by these results, which raise the following open questions:

• Can one improve the minimum distance bound on the Repeat/Convolutional
double-accumulate codes?

• Can one obtain better minimum distance by replacing the accumulators
with generic convolutional encoders? And by considering more concate-
nation in the serial structure?

Numerical evaluation of the minimum distance shows that these codes are
asymptotically good and that the minimum distance is close to GV-distance,
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even with a small number of inner encoders [44, 46]. However, there is not yet
a complete and fully satisfactory theoretic understanding of these phoenomena.

Studying such general setting is not a trivial issue. A basic request to
analyze these codes is to determine weight distributions of constituent convo-
lutional encoders. Indeed, the average weight enumerators and the correspond-
ing spectral functions can be expressed in terms of weight distributions of
constituent components (see [18]). For example, in the case of repeat multiple-
accumulate codes, an explicit analytic formula for the asymptotic spectral func-
tions is known and can be expressed in a recursive way [48].

In general cases, the theoretical justification of the extension of the iterative
formula of spectral function [49] requires some finer work, since the limit step
needs uniformity in the convergence to the spectral function of the constituent
codes. This fact, to the best of our knowledge, has never been proved before.

The weight distributions of convolutional encoders have been studied by a
large number of authors [36, 46, 48–51]. Although analytic formulæ of weight
spectrum can be derived in some cases by using combinatorial techniques —
i.e. for rate-1 convolutional encoders with transfer function (1 + D)−1 and
(1+D+D2)−1 [48]— there is not a general method that is able to derive explicit
expressions. McEliece has shown how the weight distribution can be derived,
theoretically, from the adjacency matrix of the state diagram associated with
a minimal realization of the encoder [50]. This approach is able to determine
the weight spectrum exactly for relatively small lengths, but the computation
becomes prohibitively expensive as the truncation lengths increase. Bender et
al. have shown in [52] that central and local limit theorems can be derived for
the growth of the components of the power of a matrix. This approach would
allow in principle to apply Hayman approximation (see [53] for a survey) to
the problem of the weight distribution of convolutional codes. However the
hypotheses needed to use these techniques are very restrictive and they are not
guaranteed in general cases. An overview of these methods can be found in [46]
and in [21].

Also for the asymptotic exponential growth rate one can not hope in gen-
eral to give explicit analytic expressions. Nevertheless, there exists an efficient
numerical procedure to determine this growth rate to any desired degree of
accuracy [49]. However, this method is not able to provide more refined infor-
mation on the speed of convergence of the sequence of the exact exponents to
the asymptotic growth rate and to guarantee the continuity of limit function.

1.3.2 What is new in this thesis with respect to the literature

In this dissertation, we undertake a rigorous analysis of average spectral func-
tions and minimum distance distribution of turbo-like codes and structured
LDPC.

As a first step in this study, we focus on truncated convolutional encoders,
which are the constituent elements of turbo concatenations. We present a
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detailed analysis of weight distribution function and its exponential growth
rate.

Our contribution is mainly theoretical. We improve upon previous results
in the following ways. We express weight enumerators of convolutional codes
as coefficients of formal power series with nonnegative coefficients. Although
these expressions can be computed for relatively small truncation lengths, they
become prohibitively complex to compute as truncation lengths and weights
increase. By applying an extension of Multidimensional Saddle Point (MSP)
method (also known under the name of Hayman-like techniques) [52], we prove
that weight enumerators admit an accurate approximation (not only their ex-
ponent), which allows more efficient numerical evaluations. We show in some
examples that our approximation is very accurate, even for quite short trunca-
tion lengths, and that it improves estimates known in literature. This approx-
imation is then used to obtain a formula for the asymptotic spectral function.
We show that the expression derived for the asymptotic spectral function can
be recast into the formulation given in [49]. However, this new representation
points out that the function is continuous, concave and differentiable with re-
spect to both variables in its convex and closed domain. These properties were
conjectured in [46], but never proved. The expressions obtained for weight dis-
tributions can in general only evaluated numerically (except for some specific
cases). However, the numerical procedure to compute these functions can be
conveniently improved by using any standard algorithm for unconstrained min-
imization of a convex function (e.g. gradient descent). Finally, we study the
speed of convergence of exact exponents of weight enumerators to the asymp-
totic limit and we prove uniformity of this convergence. This result provides
an estimate of the speed of the vanishing truncation effect when the truncation
length goes to infinity.

Building upon these results, we study average spectral functions of multiple
serially concatenated codes. Our contribution consists in showing analytically
that if m ≥ 2 then the distance spectra are equal to 0 below a threshold dis-
tance δm and are positive above it. Since the spectral shapes are not negative
but only equal to 0 before δm, this is not sufficient to conclude that their rela-
tive minimum distances also reach δm. However, by using techniques proposed
by Jin and Mc-Eliece [19], we conclude that indeed for such ensembles, min-
imum distances scale linearly in the codewords length and the typical linear
growth rate, for a specific m, is exactly given by δm. Finally, under a very
mild condition on the outer encoder we prove that asymptotic spectral func-
tions form a sequence of functions uniformly convergent in m. Their limit is
the maximum between 0 and the average spectral shape of the random linear
coding ensemble. As a consequence, the threshold sequence δm converges to
the Gilbert-Varshamov (GV) distance when m goes to infinity.

Finally, we focus on a family of codes that generalize Repeat-Convolute
codes, and can be seen both as particular systematic serial turbo codes and as
structured LDPC codes. Using techniques, similar to those previously exploited



10 Introduction

to study serial coding schemes, we analyze minimum distances and prove in
this new setting coding theorems, already obtained for serially concatenated
codes. In particular, we prove that the minimum distance cannot grow lin-
early deterministically. Inspired by the the tail estimations of [36], we identify
parameters allowing the typical minimum distance to grow sub-linearly in the
codewords length with high probability.

This dissertation extends and completes the analysis in [37, 44, 46, 54, 55],
and gives a deeper insight into the problem of the distance spectra of multi-
ple serially concatenated codes. It also corrects some wrong statements made
in [56–58] and partially revised in [59] for the case of multiple serially concate-
nated codes and in [42] for structured LDPC.

1.4 Summary and outline of the thesis

1.4.1 Chapter 2

Before presenting the core of the work, this chapter defines recurrent notation
and collects some specific tools that are important ingredients in the sequel.
This includes a brief review of Shannon classical coding theory for memoryless
channel; block linear codes, code ensembles and the Gilbert-Varshamov bound
are presented, as well as enumerating functions.

1.4.2 Chapter 3

In Chapter 3, we focus on convolutional codes, which are the constituent el-
ements of turbo concatenations. After recalling some properties which will
be instrumental for our derivations, we present a detailed analysis of weight
distribution function and its exponential growth rate for truncated convolu-
tional encoders. In particular, exact formulæ are derived in terms of generating
functions of error events associated with a minimal realization of the encoder.
Although explicit analytic expressions can be computed for relatively small
truncation lengths, the explicit expressions become prohibitively complex to
compute as truncation lengths and weights increase. Fortunately, a very accu-
rate asymptotic expansion can be derived using the Multidimensional Saddle
Point method (MSP-metohd). This approximation is substantially easier to
evaluate and is used to obtain an expression for the asymptotic spectral func-
tion and to prove continuity and differentiability in its domain (convex and
closed). Finally, this approach is able to guarantee that the sequence of expo-
nential growth rate converges uniformly to the asymptotic limit and to estimate
the speed of this convergence.

This material has been presented in [60].
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1.4.3 Chapter 4

In Chapter 4, we introduce the generic multiple serial turbo-coding ensemble
and we study average spectra and minimum distances, using the mathematical
tools devised in Chapter 3. Our contribution consists in analytically showing
that for m ≥ 2 the average distance spectra are equal to 0 below a threshold
distance δm and are positive above it. We show that minimum distances grow
linearly in the truncation length with probability one, and that lower bounds on
the asymptotic normalized minimum distance are exactly given by δm. Finally,
we prove under a very mild condition on the outer encoder that asymptotic
spectral functions form a uniformly convergent sequence of functions. Their
limit is the maximum between 0 and the average spectral shape of the random
linear coding ensemble. As a consequence, the threshold sequence δm converges
to the Gilbert-Varshamov (GV) distance.

Preliminary versions of this material are in [54, 55, 61].

1.4.4 Chapter 5

Chapter 5 deals with the family of irregular repeat-convolute (IRC) codes. They
can be seen both as particular systematic serial turbo codes and as structured
LDPC codes. We derive the average weight distribution function and its asymp-
totic growth rate for these code ensembles. Inspired both by the the tail estima-
tions of [36] and by the bounding techniques of [37], we prove typical minimum
distance of such coding schemes scales only sub-linearly in the code length with
probability approaching one.

1.4.5 Chapter 6

The overall conclusion first summarizes the main contributions, extracting re-
sults from different chapters; it gives some general messages suggested by this
work; then it concludes with several open questions and more general directions
for related future research.

1.4.6 Appendix A

This chapter is devoted to the description of multidimensional saddle-point
(MSP) techniques to estimate order of magnitude of coefficients in large powers
of multivariate power series with non-negative coefficients.

The first step is to recast the problem as the computation of a Cauchy inte-
gral and to apply the residue theorem. In order to estimate complex integrals of
an analytic function, a path crossing a saddle-point is chosen and the integrand
is estimated locally near this saddle-point. If the generating function satisfies
some “nice” properties, which go under the name of localization or concentra-
tion, the contribution near the saddle-point captures the essential part of the
integral. Some examples of admissible functions are multivariate polynomial
(see Lemma D.14 in [21]) and univariate series (see Section VIII.8.1 in [62]).
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We prove that these techniques can be extended to a more general class of
function of generating functions, which includes the cases treated in [52, Thm.
2] and [21, Lemma D.14]. Moreover, our modification allows to estimate the
order of magnitude of a (convergent) sequence of coefficients in large powers of
multivariate functions.

1.5 Publications

The results of the present work are based on the following papers.

• F. Fagnani, C. Ravazzi, “Spectra and minimum distances of Repeat Multi-
ple Accumulate codes”, in Proc. of Information Theory and Applications
Workshop, pp. 77-86, La Jolla, CA, San Diego, Jan. 2008.

• C. Ravazzi, F. Fagnani, “Spectra and minimum distances of Repeat Multiple-
Accumulate codes”, IEEE Transactions on Information Theory, Vol. 55(11),
pp. 4905-4924, Nov. 2009.

• C. Ravazzi, F. Fagnani, “Hayman-like techniques for computing input-
output weight distribution of convolutional encoders”, in Proc. of IEEE
International Symposium on Information Theory, pp. 1110-114, Austin,
Texas, June 2010.

• C. Ravazzi, F. Fagnani, “Minimum distance properties of multiple-serially
concatenated codes”, in Proc. International symposium on turbo codes &
iterative information processing, pp. 88-92, Brest, France, Sep. 2010

• C. Ravazzi, F. Fagnani, “On the growth rate of input-output weight enu-
merators of convolutional encoders”, submitted, 2010

• C. Ravazzi, F. Fagnani, “Multiple serial coding ensemble: average spectra
and minimum distances”, in preparation, 2010

All publications are available online at: calvino.polito.it/∼ravazzi/research



Preliminaries 2
Brief—In this chapter, we summarize some basic results used later
in this thesis. The material here presented is known. Nevertheless,
this is an opportunity to define in formal way some vocabulary and
fundamental notation.

2.1 Outline of the chapter

In Section 2.2, we introduce general notation and definition. Section 2.3 quickly
reviews some basic notions from coding theory and information theory, such
as Shannon theorem for memoryless channel. Next, in Section 2.4, block lin-
ear codes, minimum distance, the enumerating functions are defined and the
Gilbert-Varshamov bound is presented. Finally, in Section 2.5, minimum dis-
tance distributions are analyzed for typical codes from a random linear code
ensemble.

2.2 General notation and definitions

Notation x ∈ Ω (respectively x /∈ Ω) means that element x belongs to (respec-
tively does not belong to) the set Ω. Given two sets Ω and Θ, the inclusion of
Ω in Θ is denoted with Ω ⊆ Θ, and their union and intersection are denoted
with Ω ∪ Θ and Ω ∩ Θ respectively. The union –resp. intersection– of sets
Ω1, . . . ,ΩN is summarized by

⋃
k∈[N ] Ωk –resp. by

⋂
k∈[N ] Ωk. The difference

between sets Ω and Θ is denoted Ω \ Θ = {x : x ∈ Ω and x /∈ Θ}. Given a
set Ω we denote by |Ω| its cardinality. For any subset Ω ⊆ Θ, Ωc = Θ \ Ω will
denote the complementary of Ω in Θ. The indicator function of Ω is denoted
with 1Ω : Θ → {0, 1} and defined by 1Ω(θ) if θ ∈ Ω and 1Ω(θ) = 0 otherwise.

13
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Let N,Z,Q,R,C be the usual number sets and Z2 = {0, 1} be the Galois
field with two elements. With R+ = [0,+∞) and R+ = (0,+∞) we will in-
dicate the sets, respectively, of nonnegative and positive reals. We will also
use N0 = {0} ∪ N. The sequence of integers from 1 to N ∈ N is summarized
by notation [N ]. For x ∈ R, notation ⌊x⌋ denotes the integer part of x, that
is the largest integer m ∈ Z suh that m ≤ x. For x ∈ R, ⌈x⌉ is the smallest
integer m ∈ Z suh that m ≥ x. The absolute value of x ∈ R is |x|. If z is in C,
z∗ is its conjugate. The unit imaginary part is denoted by j =

√
−1. A com-

plex number x ∈ C is represented using its norm and argument, x = ||x||ejarg(x).

The functions log and exp are to be considered with respect to a fixed,
arbitrarily chosen positive base, unless explicit mention to the contrary. Con-
ventionally, we set exp(−∞) = 0, exp(+∞) = +∞, inf(∅) = +∞ and sup(∅) =
−∞. We will use a ∨ b and a ∧ b to denote the maximum and minimum,
resepectively, between real values a and b.

This thesis makes frequent use of the Landau symbols. The notation
“f(N) = O(g(N)) when N → ∞” means that there exist positive constants
c and N0, such that f(N) ≤ cg(N) for all N > N0. The expression “f(N) =
o(g(N)) when N → ∞” means that limN→∞ |f(N)/g(N)| = 0. Finally, we use
the expression “f(N) ∼ g(N) whenN → ∞” for lim supN→∞ |f(N)/g(N)| = 1.

Boldface letters are used for vectors and matrices. The vector of Rn whose
elements are all equal to 1 is denoted 1n. Given a set Ω ⊆ Rn we denote

by
◦
Ω, Ω and co(Ω) respectively, the interior, the closure and the convex hull

of Ω. The identity matrix in Rn×n is denoted with In. The transpose of A

and its inverse are denoted AT and A−1, respectively. We use symbols |A|
for the determinant of A ∈ Rn×n. Given a vector x ∈ Zn2 with n ∈ N, we
denote by supp(x) the set of indices where x is nonzero. For a vector x ∈ Rn,
||x||2 =

√∑n
i=1 x

2
i denotes its Euclidean norm and ||x||1 =

∑
i |xi|.

Given f and g in the vector space of Cn, we indicate by 〈f , g〉 =∑k fkg
∗
k

their scalar product and with f · g their pointwise product. For f ∈ Rn and
g ∈ Cn we define fg in C as fg :=

∏
i∈supp(f) fi

gi .

Let x = (x1, . . . , xn) and F (x) be a formal multivariate series. We denote by
k = (k1, . . . , kn) and coeff{F (x),xk} or by Fk the coefficient of xk =

∏n
i=1 x

ki
i

in F (x), i.e.,

F (x) =
∑

k

coeff
{
F (x),xk

}
xk =

∑

k

Fkx
k.

If P (x) is a polynomial, we denote with ldeg and deg the largest and smallest
index for which the coefficient is nonzero, respectively

ldeg[P (x)] = min{k|coeff{P (x), xk} 6= 0}
deg[P (x)] = max{k|coeff{P (x), xk} 6= 0}.
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Let (Ω,B, ν) be a σ-finite measure space [63]. The absolutely integrable
functions f : Ω → R are probability densities, if f(ω) ≥ 0 ν-almost everywhere,
and

∫
Ω f(ω)dν(ω) = 1. We will consider the following cases:

• If Ω is finite, then B = 2Ω, ν is the counting measure and f(ω) are simply
probability vectors such that

∫
Ω f(ω)dν(ω) =

∑
ω∈Ω f(ω) = 1

• If R = Rd, then B is the Borel σ-algebra, ν is the Lebesgue measure, and
f are usual probability densities over Rd.

2.3 Shannon theory for symmetric memoryless channels

A memoryless channel (MC) is described by the triple (X ,Y, Q) where

• X is a finite input alphabet;

• Y is an output set consisting of a σ-finite measure space Y = (Y,B, ν);

• Q(·|x) is a family of transition probability densities on Y for all x ∈ X .

In most applications, either Y is finite, ν is the counting measure and Q(·|x)
are simply probability vectors, or R = Rd and ν is the Lebesgue measure.
Intuitively, Q(·|x) expresses the probability of observing the output symbol y
given that we send the symbol x ∈ X .

If the channel is used repetitively to transmit a sequence of bits, we model
a multiple use of the same channel as a new channel having input set Xn and
output set Yn = (Y n,Bn, νn) where Bn is the product σ-algebra and νn is the
product measure. Specifically, if a string x ∈ Zn2 is fed into the channel, then
the channel output is a random variable Y n distributed according to

Qn(Y
n = y|x) =

n∏

i=1

Q(yi|xi).

This means that the probability distribution of the output depends only on
the input at that time and is conditionally independent of previous channel
inputs or outputs. For simplicity we will consider binary memoryless chan-
nel, i.e. with X = Z2. A binary memoryless channel is said to be output
symmetric if Q(y|0) and Q(y|1) differ for an involutive permutation on Y,
namely, there exists τ permutation on Y such that τ ◦ τ is the identity and
Q(y|1) = Q(τ(y)|0), Q(y|0) = Q(τ(y)|1).

The most common examples of memoryless symmetric channels are the
following.

Example 2.1 (The Binary Symmetric Channel (BSC)). We have X = Y = Z2

with Q(1|0) = Q(0|1) = ǫ. In this channel every transmitted bit is received
wrong with probability ǫ. We can assume ǫ < 1/2 without loss of generality.
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Example 2.2 (The Binary Erasure Channel (BEC)). In this case we have
X = Z2 Y = 0, 1, ? with Q(1|0) = Q(0|1) = 0, Q(?|0) = Q(?|1) = ǫ. In this
channel, as it happens in the BSC, a bit is wrongly received with probability ǫ.
However, differently from the BSC, the receiver knows if an error occurs.

Example 2.3 (The Additive White Gaussian Noise channel with binary input
(BIAWGN)). . We have X = Z2, Y = R. It is a continuous channel whose
transition densities can be obtained in the following way: we associate to the
input signal 0 and 1 the real numbers −L and L respectively (where L > 0) and
we assume that the output is obtained by summing to the signal ±L a r.v. of
type N(0, σ2).

The reader is referred to [64] for further details.

A block encoder for a binary input memoryless channel (BIMSC) (Z2,Y, Q)
is an injective map φ : Zk2 → Zn2 . We define the corresponding code to be the
image of the encoder Cφ := φ(Zk2) ⊆ Zn2 . The parameters k and n are said to be,
respectively, the information and code length, and R = k/n is the transmission
rate, a measure of the amount of redundancy we are introducing. A decoder
is any mapping ψ : Yn → Zn2 . We will refer to the coding scheme as the
pair (φ, ψ). Once a coding scheme has been fixed, its word error probability
can be defined as follows. Consider the information word U , a r.v. uniformly
distributed on Zk2 , and let X = φ(U). Let moreover Y be the r.v. on Yn whose
probabilistic description is given by the conditional density Qn(y|x). The error
probability is the probability of the event {[φ−1 ◦ ψ](Y ) 6= U} or, equivalently,
{ψ(Y ) 6= X} and will be denoted by pe(φ, ψ)

pe(φ, ψ) =
1

2k

∑

x∈Cφ

pe(φ, ψ|x) (2.1)

where

pe(φ, ψ|x) =
∫

Yn

1ψ−1(Cφ\{x})(y)dνn(y) (2.2)

is the error probability conditioned to the transmission of the codeword x.
It is well known that, given the encoder φ, the decoding scheme minimizing

the error probability is the maximum likelihood (ML) decoding

ψML(y) = argmax
u∈Zk

2

Qn(y|φ(u)).

From now on we will always assume that ML decoding is used and will use
the simpler notation pe(φ). Notice that pe(φ) depends on the encoder only
through its image, the code Cφ = φ(Zk2). We sometime will use the notation
pe(Cφ) instead of pe(φ).

Theorem 2.1. Consider a BIMSC. Then there exists a constant C such that:
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• for any R < C there exists a sequence of encoders φn : Zkn2 → Zn2 with
rate Rn = kn/n and

lim inf
n→∞

Rn = R lim
n→∞

pe(φn) = 0;

• for any R > C there exists η > 0 such that for all encoder φ with rate R
pe(φn) > η.

First assertion in Shannon’s theorem tells us that we can communicate
reliably at high rates, as long as below the threshold C. Moreover, the error
probability can be made arbitrarily small without sacrificing data rates, at
the price of increasing the code length n. The several proofs in literature
[40, 64, 65] consist in considering, for given R and n ∈ N, a r.v. Φ uniformly

distributed over all possible maps from Z
⌊Rn⌋
2 → Zn2 and studying the average

error probability pe := EΦ[pe(Φ)].
The second point instead says that transmitting at rates near capacity is

the best use of the channel: error probabilities can not be made as small as we
want if we try to transmit at a rate greater than C. For these reasons, C is
called the capacity of the channel.

Shannon’s theorem does not give any practical technique to construct good
codes. We could in principle generate a random code accordingly to the uniform
distribution. However, random constructed codes have unfeasible complexity
when using ML decoding, which requires exponential time in the codewords
length n. Indeed, if we choose the 2k codewords of a code of length n randomly,
we will need to keep in memory something like 2kn bits to perform encoding
and decoding. Moreover, ML decoding will require to find a maximum of a set
of 2k real numbers. For k growing linearly with n both the memorization and
the ML decoding become therefore too computationally complex.

2.4 Linear block encoders and GV-bound

The fundamental idea to construct good codes is to separate as much as possible
its codewords: codewords which are far apart among each other will have
small probability of being mutually equivocated, when transmitted over a noisy
channel. The Hamming distance and minimum distance of a code will play a
fundamental role in this thesis.

Definition 2.1 (Hamming distance). Let x,y ∈ Zn2 , we define dH : Zn2 ×Zn2 →
N as dH(x,y) = |supp(x− y)|.

Definition 2.2 (Hamming spheres). Hamming spheres are defined BH(x, r) =
{y ∈ Zn2 |dH(x,y) ≤ r}.

Definition 2.3 (Minimum distance). Consider the encoder φ : Zk2 → Zn2 and
the corresponding code C = Im(φ). The minimum distance dmin(C) is defined
as dmin(C) = min{dH(x,y) : x,y ∈ C}.
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In this dissertation we will consider exclusively linear block encoders, namely
Z2-linear maps φ : Zk2 → Zn2 . In this case there exists a matrix G ∈ Zk×n2 ,
called generator matrix, such that φ(u) = uG, ∀u ∈ Zk2 . The code Cφ = Im(φ)
is then a Z2-linear subspace of Zn2 .

Block linear encoders allow some simplifications compared to generic block
encoders.

Definition 2.4. Given x ∈ Zn2 , the Hamming weight wH(x) is the number of
non-zero elements in x:

wH(x) = |{i = 1, . . . , n : xi 6= 0}| = dH(x,0).

In the linear case we have

dmin(φ) = min
x∈Cφ

dH(x,y) = min
x∈Cφ

dH(x+y,y+y) = min
x′∈Cφ

dH(x
′,0) = min

x′∈Cφ

wH(x).

Moreover, block linear codes have the uniform error property: the error
probability does not depend on the transmitted codeword

pe(φ) = pe(φ|x).

With this simplification the Union-Bhattacharyya bound provides the fol-
lowing estimate for error probability [40]

pe(φ) ≤
n∑

d=dmin(φ)

Ad(φ)γ
d, (2.3)

or equivalently

pe(φ) ≤
n∑

d=dmin(φ)

k∑

w=1

Aw,d(φ)γ
d.

where Ad(φ) and Aw,d(φ) are the weight enumerators of the encoder φ defined
as follows

Ad(φ) = |{u ∈ Zk2 : wH(φ(u)) = d}| (2.4)

Aw,d(φ) = |{u ∈ Zk2 : wH(u) = w, wH(φ(u)) = d}| (2.5)

The expression in (2.3) shows that weight enumerators are the main ingredi-
ent to estimate error probabilities. Moreover, if the Bhattacharyya parameter
is small then the first term in the summation is generally the dominant one:

n∑

d=dmin(φ)

Ad(φ)γ
d ∼ Admin(φ)(φ)γ

dmin(φ) γ → 0.

A lower bound on the error probability can be obtained in terms exclusively
of minimum distance. Define the folowing equivocation sets

Λ0 = {y ∈ Y : Q(y|0) ≥ Q(y|1)} Λ1 = {y ∈ Y : Q(y|1) ≥ Q(y|0)},
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and let p be the equivocation probability

p =

∫

Λ1

Q(y|0)dν =

∫

Λ0

Q(y|1)dν. (2.6)

Let y ∈ Cφ such that wH(y) = dmin(Cφ). Assume the sequence 0 ∈ Cφ is
transmitted over the channel and equivocation happens in all the positions in
supp(y). In that case for sure D(y) 6= 0. This event happens with probability
pdmin(Cφ) and we clearly have

pe(φ) ≥ pdmin(Cφ). (2.7)

The estimate in (2.7), as a consequence, suggests that error probability can
not converge to 0 unless dmin(φ) → ∞ when n→ ∞. In other words, in order to
construct codes achieving Shannon limit, necessarily we need to make sure that
their minimum distance does not remain bounded when n grows. Moreover, if
we want to achieve exponential convergence, dmin(Cφ) has to grow linearly in
n. This motivates the following definition

Definition 2.5. A sequence of encoders φn with rate Rn = kn/n with minimum
distance dn = dmin(φn) is asymptotically good if

lim inf
n→∞

Rn = R > 0 lim inf
n→∞

dn
n

= δmin > 0.

We call relative minimum distance of the sequence φn the value δmin =
δmin(R).

2.4.1 The Gilbert-Varshamov bound

The GV-bound is a lower bound on the largest minimum distance achievable
by codes with rate dimension k and length n. The GV bound has attracted
a huge amount of attention from researchers. In particular the asymptotic
tightness of the GV bound is one of the most important unproved conjectures
in coding theory. A well known fact is that the Gilbert-Varshamov bound
is asymptotically achieved with probability one by the binary linear coding
ensemble [29], while this is not the case for the random coding ensemble.

For every n and k fixed, define

dGV = max

{
d ≤ n/2

∣∣∣∣2
k
d−1∑

h=1

≤ 2n

}

Theorem 2.2. For every R there exists a sequence of codes Cn ⊆ Zn2 of di-
mension k such that dmin(Cn) ≥ dGV.

The proof is obtained by a “greedy algorithm” construction [26]: it provides
a code meeting the bound above.
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1. Inizialization: Cn = x1 with x1 ∈ Zn2

2. Step i ≥ 2: Set S =
⋃i−1
j=1 Bd−1(xj). If S = Zn2 , halt. Otherwise choose a

vector xi in Zn2 \ Si; set Cn = Cn ∪ {xi}; iterate.

Proposition 2.1. For every pair (R, δ) with δ < 1/2 satisfying the following
condition

H(δ) ≤ (1−R) ln 2 (2.8)

there exists a sequence of codes Cn with rate Rn = kn/n and minimum distance
dn such that

lim inf
n→∞

Rn = R lim inf
n→∞

dn
n

= δ.

Definition 2.6. We call normalized Gilbert-Varshamov distance the greatest
value δ satisfying the inequality (2.8)

δGV (R) = max {δ ≤ 1/2 : H(δ) ≤ (1−R) ln 2} = (H |[0,1/2])−1[(1 −R) ln 2].
(2.9)

The normalized GV-distance δGV is defined as the smallest root of equation
H(δ) = (1 − R) ln 2 con 0 ≤ R ≤ 1 (see Figure 2.1(a)): δGV (0) = 1/2 and
δGV (R) is monotonically decreasing in R ∈ [0, 1] (see Figure 2.1(b)).
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(a) δGV (R) = (H|[0,1/2])
−1((1 −R) ln 2).
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(b) Normalized GV-distance δGV as a function
of R.

Figure 2.1: Normalized GV-distance

Proposition 2.1 is the asymptotic version of the GV bound. Given a rate
R ∈ (0, 1), it states that there exist codes of length n and minimum distance
at least nδGV(R). This fact leads to the following definition.

Definition 2.7. The sequence Cn ∼ (n, kn, dn) attains the GV-bound if

lim inf
n→∞

Rn = R lim inf
i→∞

dn
n

= δGV (R).

./3_Figure/deltaGV1.eps
./3_Figure/delta_GV.eps
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2.5 The probabilistic method

To put the rest of the dissertation into perspective and introduce notation, let
us recall how the probabilistic method derives the Gilbert Varshamov bound
for linear codes.

In order to prove the existence of a coding scheme with certain properties,
a probability space is constructed (code ensemble) and then it is shown that a
randomly chosen code from this space satisfies the desired properties with high
probability.

Let E be a set of Z2-linear encoders with rate R and length N . We can
introduce a probabilistic structure on E by considering a random encoder cho-
sen uniformly from this set. We then define the average output and average
input-output weight enumerators of E , respectively, as follows

Ad (E )
.
=

1

|E |
∑

E∈E

Ad(E)

Aw,d (E )
.
=

1

|E |
∑

E∈E

Aw,d(E).

Consider now a sequence E = {EN}N∈N, where each EN is an ensemble of
encoders of length N . For each ensemble EN , Ad(EN ) and Aw,d(EN ) are well
defined.

We define the N-th spectral function of E as

rN (δ; E )
.
=

1

N
lnA⌊δN⌋(EN ), for δ ∈ [0, 1]

and the asymptotic spectral function of E as

r̂(δ; E )
.
= lim sup

N→∞
rN (δ; E ), for δ ∈ [0, 1]. (2.10)

Whenever E is clear from the context, spectral function will simply be
denoted by rN (δ) and r̂(δ), respectively.

Example 2.4 (Random linear encoder ensemble). For fixed N ∈ N and rate R,
let LN be the ensemble generated by the set of all generator ⌊RN⌋×N -binary
matrices. This is equivalent to the ensemble formed by choosing each entry of
a random generator matrix i.i.d. according to a Bernoulli with parameter 1/2.

The average output weight enumerators for the linear encoder ensemble can
be computed to be (see [29,30])

Ad (LN ) =

{
1 + 2⌊RN⌋−1

2N d = 0(
N
d

)
2⌊RN⌋−1

2N
1 ≤ d ≤ N.

(2.11)

Since the average number of weight-zero codewords is larger than one, there
will always be some encoders in this ensemble which are not invertible.
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Let now L = {LN}N∈N. It can be verified that the asymptotic spectral
function has the following expression

r̂(δ;L ) = H(δ)− (1−R) ln 2 (2.12)

where H(δ) = −δ ln δ − (1 − δ) ln(1 − δ) is the binary entropy function on the
natural base.

Notice that r̂(δGV (R);L ) = 0 and that the spectral function is negative
for δ < δGV (R).

One of the uses of the average weight enumerators and the corresponding
spectral functions is to obtain probabilistic information on the minimum dis-
tance of the encoders of the ensemble. Indeed the union bound leads to the
following estimation

Lemma 2.1 (Lemma 1 in [44]).

P (dmin(E ) < d) ≤
d−1∑

h=1

Ah(E ) , (2.13)

where dmin(E ) denotes the minimum distance as a random variable on the
ensemble.

Proof. Let φ be an encoder chosen uniformly from the ensemble E and {Ah(φ)}nh=1

be weight enumerators defined in (2.4). We thus have

P(dmin(E ) < d) = P

(
(A0(φ) > 1) ∪

d−1⋃

h=1

(Ah(φ) > 0)

)
=

= P

(
(A0(φ) − 1 ≥ 1) ∪

d−1⋃

h=1

(Ah(φ) ≥ 1)

)
.

By union bound estimation we get

P(dmin(E ) < d) ≤ P(A0(φ)− 1 ≥ 1) +

d−1∑

h=1

P(Ah(φ) ≥ 1) ≤

≤ A0(E )− 1 +

d−1∑

h=1

Ah(E ),

where the last step is obtained by using Markov inequality.

We have the following simple result:
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Proposition 2.2. Consider a sequence of encoder ensembles E = {EN}N∈N.
If there exists δ0 such that

sup
σ≤δ

r̂(σ; E ) < 0, ∀δ < δ0

then, for any ǫ > 0,

P (dmin(EN) < (δ0 − ǫ)N)
N→∞−→ 0. (2.14)

Proof. This is a straightforward application of inequality (2.13) considering
that Ah(EN ) = exp{NrN (h/N ; E )}.

Example 2.5 (Random linear encoder ensemble). The use of Proposition 2.2
makes surprisingly easy the estimation of the minimum distance growth rate of
a typical binary linear encoder, chosen uniformly from the set LN .

Notice that the asymptotic spectral function given in (2.12) is negative for
δ < δGV (R), crosses zero at δ = δGV (R) then is positive for δ ∈ (δGV (R), 1 −
δGV (R)). By Proposition 2.2, it follows that for any ǫ > 0,

P (dmin(LN ) < (δGV (R)− ǫ)N)
N→∞−→ 0. (2.15)





Weight distribution of

convolutional encoders 3
Brief—In this chapter, the input–output weight distribution func-
tions of truncated convolutional encoders are studied. In particular,
they can be expressed in terms of multivariate power series with
non-negative coefficients. Although explicit analytic expressions can
be computed for relatively small truncation lengths, the explicit ex-
pressions become prohibitively complex to compute as truncation
lengths and weights increase. Fortunately, a very accurate asymp-
totic expansion can be derived using the Multidimensional Saddle
Point method (MSP-metohd). This approximation is substantially
easier to evaluate and is used to obtain an expression for the asymp-
totic spectral function and to prove continuity and concavity. This
approximation is substantially easier to evaluate and is used to ob-
tain an expression for the asymptotic spectral function and to prove
continuity and concavity. Finally, this approach is able to guarantee
that the sequence of exponential growth rate converges uniformly to
the asymptotic limit and to estimate the speed of this convergence.

3.1 Introduction and outline of the chapter

Convolutional encoders can be seen as finite-state machines with linear update
of the state and of the output. The code sequence that emerges from the
encoder depends upon previous message symbols as well as the present ones.
A finite state map can be pictorially described by a trellis and the sequence of
the states transitions (and corresponding input-output stream) can be seen as
a path through a trellis.

Although the natural setting considers encoders that map semi-infinite se-
quence into semi-infinite stream, in main applications convolutional encoders
are used with a fixed block-length. Every block is obtained by letting the state
machine to evolve a finite number of steps, or, equivalently, by truncating the

25
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trellis at a fixed depth, called truncation length.

The weight distribution of convolutional encoders has been extensively stud-
ied in the literature. Here, we address the issue to estimate growth rate of the
weight distribution as a function of truncation length and to investigate some
additional properties about the asymptotic spectral function.

As a first step, we express the input–output weight enumerators of trun-
cated convolutional encoders as coefficients of generating functions of error
events (paths in the trellis starting and ending in the zero state and taking
non-zero state values in between). Although explicit analytic expressions can
be computed for relatively small truncation lengths, the explicit expressions
become computationally complex as truncation lengths and weights increase.

The extraction of coefficients in a fixed enumerating function constitutes a
crucial issue in enumerative combinatorics [62]. A technique to approximate
the growth rate of coefficients of some generating function has been developed
in [66, 67] and applied in [21, 42, 43] in the context of coding theory. We will
prove that a similar approach can be extended also to approximate coefficients
of generating functions of error events. This approximation is substantially
easier to evaluate and is used to obtain an expression for the asymptotic spec-
tral function. It can be proved that this expression can be recast into the
formulation given in [49]. Our new representation put in emphasis that the
spectral function is continuous and concave. Second, this approach is able to
guarantee that the sequence of exponential growth rate converges uniformly to
the asymptotic limit and to estimate the speed of this convergence. All these
properties are useful to derive results regarding ML properties of concatenated
coding schemes (see [19]) and to prove results in next chapter. Finally, al-
though the asymptotic expression can in general only be evaluated numerically,
the numerical procedure can be conveniently implemented using any standard
algorithm for unconstrained minimization of a convex function (e.g., gradient
descent).

The material is organized as follows. We introduce preliminary facts on
convolutional encoders (Section 3.2). In particular, we discuss the controller
canonical form, minimal realizations of a convolutional encoder, and we de-
fine the concept of error events. In Section 3.3 we state our main results. In
particular we provide exact formulæ and accurate approximations of weight
enumerators and of their exponential growth rate as a function of the trunca-
tion length. Some examples and numerical results are shown in Section 3.4.
Technical proofs are collected in Section 3.5. Section 3.6 contains some con-
cluding remarks. Some more technical proofs about asymptotic estimates of
powers of series with nonnegative coefficients can be found in Appendix A.
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3.2 Fundamental facts on convolutional encoders

In this section we recall some basic system-theoretic properties about convolu-
tional encoders. Further details can be found in [24, 25, 29].

3.2.1 Convolutional encoders and weight enumerators

Let V ((D)) be the Z2-vector space of formal Laurent series with coefficient in
the Z2-vector space V . Elements in V ((D)) are represented as

∑+∞
−∞ vtD

t with
vt = 0 for t sufficiently small. Inside V ((D)) we consider the subspace of causal
Laurent series with coefficients in V , denoted by V [[D]], and the subspace of
rational functions V (D).

Definition 3.1. Given v ∈ V ((D)), we define the support of v as supp(v) :=
{t ∈ Z|vt 6= 0} and the Hamming weight as wH(v) :=

∑
t wH(vt).

Given v1,v2 ∈ V ((D)) and t̃ ∈ Z we define the concatenation of v1 ∨t̃ v2

at t̃ as the Laurent series

(v1 ∨t̃ v2)t =

{
v1
t if t < t̃

v2
t if t ≥ t̃

We will also consider multiple concatenations of Laurent series v1 ∨t1 v2 ∨t2
v2 . . . ∨tm−1 vm at concatenation times t1 < t2 < . . . < tm−1. If v ∈ V ((D))
and I ∈ Z, we define the restriction of v to I as the element v|I ∈ V I such
that (v|I)t = vt for every t ∈ I.

As a convolutional encoder we mean a homomorphic map ψ : Zk2((D)) →
Zn2 ((D)) which acts as a multiplicative operator ψ(u(D)) = u(D)Ψ(D), where
Ψ ∈ Zk×n2 (D) ∩ Zk×n2 [[D]]. We define the corresponding code to be the image
of the encoder Cψ = ψ

(
Zk2((D))

)
and x(D) ∈ Cψ is a codeword.

As convolutional encoders are rational, there exist a finite state space Z =
Z
µ
2 and matrices F ∈ Z

µ×µ
2 , G ∈ Z

µ×k
2 , H ∈ Z

n×µ
2 and L ∈ Zn×k2 such that

x(D) = u(D)Ψ(D) if and only if there exists a state sequence z(D) ∈ Z((D))
satisfying {

zt+1 = Fzt +Gut

xt = Hzt + Lut
(3.1)

Let us now consider the realization (F,G,H,L) of convolutional encoder Ψ.
By fixing z0 = 0 —which is the usual assumption that the shift register is
empty at the beginning of the encoding process— the sequence z(D) is uniquely
determined by the input sequence u(D) through the dynamical equations in
(3.1); we will say that such z(D) is the state sequence associated with u(D).
The interpretation of this representation is discussed in detail in [29].

A finite state map can be pictorially described by a trellis, by drawing, at
each time step t, vertices corresponding to the elements of Zµ2 , and edge from
vertex zt to vertex zt+1, with input tag ut and output label xt. Formally we
have the following definition.
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Definition 3.2. We define the trellis or state diagram of (F,G,H,L) as the
labeled directed graph given by the vertex set Zµ2 and the set of edges

{zt
(ut,xt)−→ zt+1|zt, zt+1 ∈ Z

µ
2 ,ut ∈ Zk2 ,xt ∈ Zn2 :

zt+1 = Fzt +Gut,xt = Hzt + Lut}

Notice that the trellis is not an invariant of the code. It depends on the
choice of the generator matrix as well as on the realization.

Definition 3.3. A path in the trellis of length l is a sequence of edges of the
form

zt0
(ut0 ,xt0 )−→ zt1

(ut1 ,xt1 )−→ zt2
(ut1 ,xt1 )−→ . . .

(utl−1
,xtl−1

)
−→ ztl

It is well-known [29] that each encoder admits a minimal realization (i.e.,
with observability and controllability properties and with smallest state dimen-
sion µ). From now on we will always assume that we are using the minimal
trellis.

Now we define some properties of particular convolutional encoders, which
will be fundamental in our setting.

Definition 3.4. Given ψ ∈ Zk×n2 (D) we say that ψ is non catastrophic if
every output with compact support comes from an input with compact support.

Notice that systematic encoders are surely non-catastrophic. We have for
non-catastrophic encoders the following characterization: there exists ζ > 0
such that, for all input sequence u it holds wH(u) ≤ ζwH(ψ(u)).

Given ψ ∈ Zk×n2 (D) we say that ψ is recursive if no output with compact
support comes from an input with Hamming weight one. Formally, we have
the following definition.

Definition 3.5. The convolutional encoder ψ ∈ Zk×n2 (D) is recursive if, for
all u ∈ Zk2((D)), it holds the following implication

|wH(u)| = 1 =⇒ wH(φ(u)) = +∞.

3.2.2 Truncated convolutional encoders

Given a convolutional encoder ψ ∈ Zk×n2 (D) and fixed N ∈ N, consider the
block encoder ψN : ZkN2 → ZnN2 obtained by restricting the inputs of the
convolutional encoder ψ to those inputs supported inside the window [0, N−1]
and taking the projection of the output on the coordinates also in [0, N − 1],
namely

ψN (u,u1, . . . ,uN−1) = (x0,x1, . . . ,xN−1)

if

ψ(u0 + u1D + . . .+ uN−1D
N−1) = x0 + x1D + . . .+ xN−1D

N−1 + o(DN−1)
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We say that ψN is the truncated convolutional encoder with truncation length
N .

For any block encoder ψN , obtained by truncating a convolutional encoder
ψ ∈ Zk×n2 (D) ∩ Zk×n2 [[D]], we define the input–output weight enumerator as

Aw,d(ψN ) := |{u ∈ (Zk2)
N :wH(u)=w,wH(ψN (u))=d}|.

We are interested in the linear term of their exponential growth rate. For
a given convolutional encoder and (u, δ) ∈ [0, 1]2, we define the input–output
weight distribution function

GN (u, δ;ψ) :=

{
lnA⌊ukN⌋,⌊δnN⌋(ψN )

nN if A⌊ukN⌋,⌊δnN⌋(ψN ) > 0,

−∞ if A⌊ukN⌋,⌊δnN⌋(ψN ) = 0

and the asymptotic growth rate as

G(u, δ;ψ) := lim
N→∞

GN (u, δ;ψ).

We will also use the output weight enumerators Ad(ψN ) =
∑
w Aw,d(ψN )

and the output weight distribution function G(δ) = maxu∈[0,1]G(u, δ).

3.2.3 Error events and their generating functions

The concatenation of Laurent series defined in the previous section leads to the
following definitions. Some of these definitions can also be found in [50].

Definition 3.6 (Error event). The sequence u ∈ Zk2((D)) is an error event for
ψ if there exists tb and te ∈ Z such that tb < te and supp(u) ⊆ [tb, te], supp(z) =
[tb + 1, te] where z(D) ∈ Z((D)) is the state sequence associated to the input
sequence u. Notice that this implies that necessarily utb 6= 0 and supp(ψ(u)) ⊆
[te, tb]. We call [tb, te] the active window and we denote by l(u) = te − tb + 1
the length of the (input) error event.

Error events can be depicted as path in the trellis starting and ending in
the zero state and taking non-zero state values in between. Every non-zero
codeword of a convolutional code (known also as molecular codewords) can be
thought as composition of several concatenated error events.

In the classical analysis, essential design parameter of a convolutional en-
coder is its free distance.

Definition 3.7. Given a convolutional encoder ψ ∈ Zk×n2 , we define the free
distance of ψ to be

df (ψ) := min{wH(ψ(u))|u 6= 0}.

If we consider truncated convolutional encoder, it might happen that the
state sequence is not in the 0 state at time N. Thus we have to distinguish two
types of error events for the family of truncated convolutional encoder: the
regular and the truncated error events.
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Definition 3.8 (Regular error events). An input vector u ∈ (Zk2)
N is a regular

error event of length l ≤ N for ψN if u(D) ∈ Zk2((D)) is an error event of length
l for ψ.

Definition 3.9 (Truncated error events). An input vector u ∈ ZkN2 is a trun-
cated error event of length l ≤ N for ψN if there exists T ∈ [0, N ] such that the
correspondent state sequence is such that zt = 0 ∀t ≤ T and zt 6= 0 ∀T ≤ t ≤ N
with l = N − T .

These definitions lead to classify codewords as regular and truncated. We
denote with Rw,d(ψN ) and Tw,d(ψN ) the number of input sequences having
input weight w, output weight d, and consisting exclusively of regular error
events, or containing a truncated error event, respectively. We thus have
Aw,d(ψN ) = Rw,d(ψN ) + Tw,d(ψN ).

Let ψN be the block encoder obtained by truncating after N trellis steps
a convolutional encoder ψ ∈ Zk×n2 (D) ∩ Zk×n2 [[D]]. Let µ be the dimension of
the state space. Consider a triple (w, d, l), we denote by Ew,d,l the number of
distinct error events of input weight w, output weight d and length l. Define
the following formal power series

E(x, y, z) =
∑

w,d,l

Ew,d,lx
wydzl

The function E(x, y, z) is called the detour generating function [21].
To display this function, we collect the information regarding the effect

of the state transitions at each step, except for the zero state, in the matrix
form. This matrix, also known as transition matrix, appears in different forms
in [21, 49, 50, 68]. Fix an ordering of the states. The transition matrix M ∈
(N0[x, y, z])

2µ−1×2µ−1 is defined as follows. If there is one step transition from
state z to state v with input u and output x we set the Mv,z entry with a
label xwH(u)ywH(x)z where wH(u) is the weight of input sequence that takes
the machine from state z to state v, wH(x) is the corresponding output weight
and z takes into account the step in the trellis. Otherwise, we set Mv,z = 0 if
there is no one step transition from state z to state v. Formally, we have

Mv,z =

{
xwH(u)ywH(x)z if z

(u,x)−→ v

0 otherwise

Notice that, once we have fixed an ordering of the states, we will always
choose the same ordering for the row index and for the column index. The
transfer matrix depends exclusively on the minimal realization of the encoder.
In this sense, the transition matrix is well defined up to similarity transforma-
tion via a permutation matrix [69].

In similar way, let a, b ∈ (N0[x, y, z])
2µ−1

be the vectors which encode the
effect of the transitions from state 0 to state z and from state v to state 0,
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respectively:

az =

{
xwH(u)ywH(x)z if 0

(u,x)−→ z

0 otherwise

bv =

{
xwH(u)ywH(x)z if v

(u,x)−→ 0

0 otherwise
.

With this formalism the formal power series E(x, y, z) can be represented
as follows

E(x, y, z) =
∑

j

b(x, y, z)TM(x, y, z)ja(x, y, z). (3.2)

We define the truncated detour generating function as follows

Ẽ(x, y, z) :=
∑

w,d,l

Ẽw,d,lx
wydzl,

where Ẽw,d,l is the number of paths that start but do not end in the zero state
and have no zero transition through the trellis with input weight w, output
weight d and length l. With previous formalism we have

Ẽ(x, y, z) =
∑

i


∑

j

Mj(x, y, z)a(x, y, z)



i

. (3.3)

Other algorithms for computing the generating function of error events
while avoiding the big transition matrix are Viterbi’s method, see [68], or Ma-
son’s gain formula as described in [70]. Further methods can be found in [71].

3.3 Main results

In this section we describe how to compute the weight distribution of a convolu-
tional code in terms of the trellis representation and its corresponding exponen-
tial growth rate. The resulting expressions are either new, or otherwise require
more laborious methods to obtain. We discuss in detail our contribution.

In the following, we present a new representation for the weight enumera-
tors of convolutional encoders. A main tool is the use of generating function of
both kinds of error event (regular and truncated). We will use the subsequent
expressions to evaluate the growth rate of the weight distribution as a function
of truncation length N.

Consider the following formal power series

F (x, y, z) :=
E(x, y, z)

(1− z)
(3.4)

L(x, y, z) :=
1

1− z
+
Ẽ(x, y, z)

E(x, y, z)
. (3.5)
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At the moment we do not require any concept of convergence and we interpret
x, y, z as formal indeterminates.

Theorem 3.1 (Weight enumerators). The weight distribution of a truncated
convolutional encoder ψN is given by

Aw,d(ψN ) =

N∑

t=1

coeff
{
L(x, y, z)F (x, y, z)t, xwydzN

}
. (3.6)

While the computation of the expression in (3.6) is easy for reasonably sized
parameters, it quickly becomes unpractical when the truncation length N is
growing. Notice that formula in (3.6) involves powers of series with nonneg-
ative coefficients. A technique for approximate evaluation of the growth rate
of coefficients of a multivariate polynomial has been developed in [66, 67] and
applied in [21,42,43] to evaluate weight and stopping set distribution of LDPC.
We will prove that a similar approach can be extended also to approximate
coefficients of generating functions in (3.6). With this technique we obtain the
asymptotic exponential growth rate of (3.6), which can indeed be estimated
much more easily.

Define the following set

W := {(u, δ) ∈ [0, 1]2|∃N0 ∈ N : R⌊ukN0⌋,⌊δnN0⌋(ψN0) > 0}. (3.7)

Proposition 3.1. W is convex and closed.

Theorem 3.2 (Asymptotic growth rate). For a given convolutional encoder ψ,
when N → ∞ the functions GN (u, δ;ψ) converge uniformly for all (u, δ) ∈ W
to

G(u, δ;ψ) =





max
α∈[0,1]

min
(x,y,z)∈Σ+

{α lnF (x,y,z)−uk lnx−δn ln y−ln z}

n if (u, δ) ∈ W
−∞ otherwise

(3.8)

where W is defined in (3.7), Σ ⊆ R3 is the region of absolute convergence of
the power series F (x, y, z), and Σ+ = Σ ∩ (R+)3.

The espression in (3.8) points out the following property, conjectured in [46]
but never proved before.

Corollary 3.1. G(u, δ;ψ) is continuous and concave with respect to u and δ
in W.

An algorithm to efficiently compute the asymptotic growth rate of the
weight distribution for a convolutional encoder was already given by Sason
et al. in [49]. We improve their results in the following ways. First, the conti-
nuity and concavity of function G(u, δ, ψ) is guaranteed with our representation
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(3.1). Second, we can ensure the uniform convergence in both variables u and
δ of functions GN (u, δ;ψ) to the asymptotic limit G(u, δ;ψ). Although the ex-
pression in (3.8) can in general only be evaluated numerically, the minimization
required can be conveniently implemented by minimizing

f(ξ1, ξ2, ξ3) = F̂α(e
ξ1 , eξ2 , eξ3),

where

F̂α(x, y, z) = ln

[
F (x, y, z)α

xukyδnz

]
.

using any standard algorithm for unconstrained minimization of a convex func-
tion (e.g., gradient descent).

Finally, we present an approximation for the weight distribution of finite
truncation-length (not only the exponent) and, consequently, we can estimate
the measure of the convergence of the sequence of exponential GN (u, δ;ψ) to
the asymptotic limit.

Theorem 3.3 (Finite length approximation). Suppose the set

F = {(k1, k2, k3) ∈ Z3|coeff{F (x, y, z), xk1yk2zk3} > 0}

generates Zν as an abelian group. Then, for N → ∞

A⌊ukN⌋,⌊δnN⌋(ψN ) ∼
√
2πσ2L(xα⋆ , yα⋆ , zα⋆)√

(2πα⋆N)ν |Γα⋆ |
F (xα⋆ , yα⋆ , zα⋆)α

⋆N

xukNα⋆ yδnNα⋆ zNα⋆

(3.9)

where (xα, yα, zα) ∈ (R+)3 is the unique solution of the following system





x
F (x,y,z)

∂F (x,y,z)
∂x = uk

α

y
F (x,y,z)

∂F (x,y,z)
∂y = δn

α

z
F (x,y,z)

∂F (x,y,z)
∂z = 1

α

(3.10)

and α⋆ and Γα⋆ are defined by

α⋆ = argmax
0≤α≤1

{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα} ,

Γα⋆ =




x ∂
∂x

(
x
F
∂F
∂x

)
y ∂
∂y

(
x
F
∂F
∂x

)
z ∂
∂z

(
x
F
∂F
∂x

)

x ∂
∂x

(
y
F
∂F
∂y

)
y ∂
∂y

(
y
F
∂F
∂y

)
z ∂
∂z

(
y
F
∂F
∂y

)

x ∂
∂x

(
z
F
∂F
∂z

)
y ∂
∂y

(
z
F
∂F
∂z

)
z ∂
∂z

(
z
F
∂F
∂z

)




∣∣∣∣∣∣∣∣
(xα⋆ ,yα⋆ ,zα⋆)

.

Some examples in Section 3.4 show that this approximation is very accurate
even for quite short truncation lengths. Explicit applications of these theorems
are developed in [19] and [61].
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3.4 Some examples

We discuss our theorems and we use them to compute enumerating functions of
some convolutional encoders. We now show that our method provides explicit
analytic expressions and we can improve the approximation given in Theorem
3.3 in some specific cases.

3.4.1 Accumulate encoder

Let AccN be the block encoder obtained by the truncation after N trellis steps
of the convolutional encoder with transfer function G(D) = (1 + D)−1. The
weight transition diagram is depicted in Figure 3.1.

0 1 0

xyz

yz

xz

Figure 3.1: Accumulate encoder: weight transition diagram

In this case the generating functions of error events are given by the follow-
ing formal power series

E(x, y, z) = x2yz2
+∞∑

k=0

(yz)k =
x2yz2

(1 − yz)
Ẽ(x, y, z) = xyz

+∞∑

k=0

(yz)k =
xyz

1− yz
.

Using Theorem 3.1, we get that if w is even then Tw,d(AccN ) = 0; otherwise,
if w is odd then Rw,d(AccN ) = 0.

We now give the computation in detail: if w is even, then

Rw,d(AccN ) =

N∑

t=1

coeff

{
x2tytz2t

(1− z)t+1(1− yz)t
, xwydzN

}

t=w/2
= coeff

{
1

(1 − z)w/2+1(1− yz)w/2
, yd−w/2zN−w

}

= coeff

{
1

(1− z)w/2+1(1− s)w/2
, sd−w/2zN−d−w/2

}

= coeff

{
1

(1− s)w/2
, sd−w/2

}
coeff

{
1

(1 − z)w/2+1
, zN−d−w/2

}

=

(
N − d
w
2

)(
d− 1
w
2 − 1

)
;
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if w is odd, then

Tw,d(AccN ) =

N∑

t=1

coeff

{
x2t−1ytz2t−1

(1 − z)t(1 − yz)t
, xwydzN

}

t=(w+1)/2
= coeff

{
1

(1− z)(w+1)/2(1 − yz)(w+1)/2
, yd−(w+1)/2zN−w

}

= coeff

{
1

(1− z)(w+1)/2(1− s)(w+1)/2
, sd−(w+1)/2zN−d−(w−1)/2

}

= coeff

{
1

(1− s)(w+1)/2
, sd−(w+1)/2

}
coeff

{
1

(1− z)(w+1)/2
, zN−d−(w−1)/2

}

=

(
N − d
w−1
2

)(
d− 1

w+1
2 − 1

)
,

from which

Aw,d(AccN ) =

(
N − d

⌊w2 ⌋

)(
d− 1

⌈w2 ⌉ − 1

)
(3.11)

as derived with different combinatorial techniques in [48]. The asymptotic
growth rate, as stated in [48], can be deduced easily.

After some manipulations, we have the following solution for the set of three
equations in (3.10)

α =
u

2
yz = 1− u

2δ
z = 1− u

2(1− δ)
.

Notice that the region of convergence of generating functions of error events is
given by Σ+ = {(x, y, z) ∈ (R+)3 : 0 ≤ z < 1, 0 ≤ yz < 1}. Equivalently, the
domain W = {(u, δ) ∈ [0, 1]2|u ∈ [0,min{2δ, 2(1 − δ)}], which is convex and
closed.

From Theorem 3.2 we get that

G(u, δ; Acc) =
u

2
ln

x2yz2

(1 − yz)(1− z)
− u lnx− δ ln y − ln z

=
u

2
ln yz − u

2
ln (1− yz) +

u

2
ln

z

1− z
− u lnx− δ ln y − ln z

=
u

2
ln
(
1− u

2δ

)
− u

2
ln

u

2δ
+
u

2
ln

z

1− z
− u lnx− δ ln(yz)− (1− δ) ln z

= δH
( u
2δ

)
+ (1− δ)H

(
u

2(1− δ)

)
. (3.12)

Finally, following the procedure given in Section 5.3, one gets the following
approximation:

GN (u, δ; Acc) ∼ −1

2
ln

(
πuN

yz(1− z)2

(1− yz)2

)
+G(u, δ) N → ∞.
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Figure 3.2: Fixed the output weight δ = 0.242, 0.343, 0.444, the x-axis is the
normalized input weight, the y-axis is the exponent of the weight distribution. The
dots are the exact exponents of the weight enumerators. The bottom curve is the
approximation using Theorem 3.3 while the upper curve is the asymptotic exponent.
The plot is obtained for the truncation length N = 80 and N = 200.

Notice that this approximation is better compared with the assertion given
in Theorem 3.3. This improvement comes from the fact that when we fix the

./3_Figure/80bis.eps
./3_Figure/200bis.eps
./3_Figure/80.eps
./3_Figure/200.eps
./3_Figure/80tris.eps
./3_Figure/200tris.eps
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input and output weight of the accumulate encoder the number of error events
and the overall length is automatically determined and we do not need any
extra factor in equation (3.9).

In Fig. 3.4.1 we show different results for truncation lengths N = 80 and
N = 200. Notice that the approximation is very good even for these low values
of N and, as to be expected, for increasing N both approximation and direct
calculation result approach the asymptotic growth rate.

3.4.2 The (4,3) Single Parity Check Code

This code can be thought of as a truncated convolutional encoder ψ ∈ Z3×4
2 (D)

with zero memory and df (ψ) = 2. We now focus on the output weight distri-
bution function.

Also in this case we obtain explicit expression for weight enumerators.
The generating function of error events is given by

E(y, z) = (6y2 + y4)z

and from Theorem 3.1 we get

Ad(ψ) =

N∑

t=1

coeff

{
E(y, z)t

(1− z)t+1
, ydzN

}
=

N∑

t=1

coeff

{
(6y2 + y4)t

zt

(1 − z)t+1
, ydzN

}

=

N∑

t=1

coeff
{
(6y2 + y4)t, yd

}
coeff

{
1

(1− z)t+1
, zN−t

}

=

N∑

t=1

(
N

t

)
coeff

{
(6 + y2)t, yd−2t

}
=

N∑

t=1

(
N

t

)
coeff

{
(6 + y)t, yd/2−2t

}

from which Ad(ψ) = 0 if d is odd. If d is even

Ad(ψ) =

d/2∑

t=1

(
N

t

)
coeff

{
t∑

i=0

(
t

i

)
6iyt−i, yd/2−2t

}

=

N∑

t=1

(
N

t

)
62t−d/2

(
t

2t− d/2

)

The asymptotic growth rate can be deduced easily.
In Fig. 3.4.2 we compare the exact weight enumerators (computed above)

with approximation obtained in Theorem 3.3 and the asymptotic spectral func-
tion provided by method described in Theorem 3.2. The truncation lengths
are taken N = 30 and N = 50.



38 Weight distribution of convolutional encoders

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

normalized output weight δ

G30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

normalized output weight δ

G50

Figure 3.3: The x-axis is the normalized output weight, the y-axis is the exponent
of the output weight distribution. The dots are the exact exponents of the weight
enumerators. The bottom curve is the approximation using Theorem 3.3 while the
upper curve is the asymptotic exponent. The plot is obtained for the truncation
length N = 30 and N = 50.

3.5 Proofs

In this section we provide the proofs of results listed in Section 3.3. Here, the
outline of the proofs.

• In Subsection 3.5.1 we prove Theorem 3.1 by using some combinatorial
results about convolutional codes.

• Proofs of Proposition 3.1, Theorem 3.2, and Corollary 3.1 are provided
in Subsection 3.5.2.

• Finally, the approximation of weight enumerators for finite length codes
(Theorem 3.3) is derived in Subsection 3.5.3.

3.5.1 Exact method for weight enumerators

Here, we prove Theorem 3.1.

Proof of Theorem 3.1. A codeword is a concatenation of several error events,
then we need to compute in how many ways one can arrange these patterns
in their total length N such that their total input weight is w and their total
output weight is d.

Given w, d, t, l ∈ N, denote with Rw,d,t,l(ψN ) the cardinality of the set of all
the input sequences u ∈ Zk2 [[D]] with input weight vector w, output weight d,
obtained by concatenating t full error events, and whose total length is l. Take
now into consideration the combinatorics of the 0’s which separate the error

./3_Figure/parity34_30.eps
./3_Figure/parity34_50.eps
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events (what Sason et al. call silent periods in [49]): we have to dispose N − l
elements in at most t+ 1 different blocks (see Figure 3.4).

. . .︸ ︷︷ ︸
a1

. . .︸ ︷︷ ︸
a2

. . . . . . . . .︸ ︷︷ ︸
at+1

1 2 t

{ ∑t+1
i=1 ai = N − l

ai ≥ 0
=⇒ CN−l,t+1 =

(
N−l+t

t

)

Figure 3.4: Combinatorics of the 0’s which separate the error events

Let CN−l,t+1 be the number of t + 1-combination with repetition of the
finite set {1, . . . , N − l}. We get that

Rw,d(ψN ) =
N∑

t=1

N∑

l=1

CN−l,t+1Rw,d,t,l(ψN ) =
N∑

t=1

N∑

l=1

(
N − l+ t

t

)
Rw,d,t,l(ψN )

=

N∑

t=1

N∑

l=1

(
N − l + t

t

) ∑

(w1, ..., wt) :∑t
i=1 wi = w

∑

(d1, ..., dt) :∑t
i=1 di = d

∑

(l1, ..., lt) :∑t
i=1 li = l




t∏

j=1

Ewj ,dj,lj




=

N∑

t=1

N∑

l=1

coeff

{
1

(1− z)t+1
, zN−l

}
coeff

{
[E(x, y, z)]

t
, xwydzl

}

=
N∑

t=1

coeff

{
[E(x, y, z)]t

(1− z)t+1
, xwydzN

}
(3.13)

Through similar arguments, we get that the number of input sequences having
input weight w output weight d and containing a truncated error event is given
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by

Tw,d(ψN ) =

=

N∑

t=1

N∑

l=1

CN−l,t
∑

(w1, ..., wt) :∑t
i=1 wi = w

∑

(d1, ..., dt) :∑t
i=1 di = d

∑

(l1, ..., lt) :∑t
i=1 li = l



t−1∏

j=1

Ewj ,dj,lj


 Ẽwt,dt,lt

=
N∑

t=1

N∑

l=1

CN−l,t

N∑

wt=1

N∑

dt=1

N∑

lt=1

Ẽwt,dt,lt× (3.14)

×
∑

(w1, ..., wt−1) :∑t
i=1 wi = w − wt

∑

(d1, ..., dt−1) :∑t
i=1 di = d− dt

∑

(l1, ..., lt−1) :∑t
i=1 li = l− lt

t−1∏

j=1

Ewj ,dj,lj

=

N∑

t=1

N∑

l=1

CN−l,t

N∑

wt=1

N∑

dt=1

N∑

lt=1

coeff
{
Ẽ(x, y, z), xwtydtzlt

}
× (3.15)

× coeff
{
[E(x, y, z)]

t−1
, xw−wtyd−dtzl−lt

}

=

N∑

t=1

N∑

l=1

(
N − l+ t− 1

t− 1

)
coeff

{
Ẽ(x, y, z) [E(x, y, z)]

t−1
, xwydzl

}

=

N∑

t=1

coeff

{
Ẽ(x, y, z)

[E(x, y, z)]
t−1

(1− z)t
, xwydzN

}
. (3.16)

. . .︸ ︷︷ ︸
a1

. . .︸ ︷︷ ︸
a2

. . . . . . . . .︸ ︷︷ ︸
at

1 2 t

↑
truncated

{ ∑t
i=1 ai = N − l

ai ≥ 0
=⇒ CN−l,t+1 =

(
N−l+t−1

t−1

)

Figure 3.5: Combinatorics of the 0’s which separate the error events

The term CN−l,t takes into consideration the combinatorics of the 0’s which
separate the error events: notice that in this case we have to dispose N − l
elements in at most t different blocks, since the last error event is not yet
terminated (see Figure 3.5).

The assertion follows by adding expression (3.13) to (3.16).



3.5. Proofs 41

3.5.2 Asymptotic growth rate of weight enumerators

Now we discuss how the exponential growth rate of weight enumerators can be
derived. Due to better readability, some more technical proofs are postponed
in Appendix A.

Lemma 3.1. For fixed (u, δ) ∈ Q2 ∩ [0, 1]2, consider the set

Nu,δ = {N ∈ N : ukN ∈ N, δnN ∈ N and RukN,δnN (ψN ) > 0}. (3.17)

Then either this set is empty, or has infinite cardinality. In particular, if N0 ∈
Nu,δ then jN0 ∈ Nu,δ for all j ∈ N.

Proof. : if N0 ∈ Nu,δ, then jN0 ∈ Nu,δ for every positive integer j. To
see this fact, observe that if N0 ∈ Nu,δ then there exists an input sequence
u(D) ∈ Zk2((D)) such that u|[0,N0−1] consists exclusively of regular error events,
wH(u|[0,N0−1]) = ukN0 and wH (ψN0(u)) = δnN0. By considering the sequence

w(D) = u(D) ∨N0 D
N0u(D) ∨2N0 . . . ∨(j−1)N0

D(j−1)N0u(D),

we get wH(w|[0,jN0−1]) = ukjN0 and wH (ψjN0 (w)) = δnjN0, or equivalently
jN0 ∈ Nu,δ.

Proof of Proposition 3.1. We prove the assertion by showing the following steps:

1. W ∩Q2 is dense in W ;

2. W ∩Q2 is convex;

3. W is closed;

4. W is convex.

1) The set W ∩Q2 is dense in W by the way it is defined. In fact, for every
ω ∈ W and open ball

B1(ω, ε) = {ω : |ω1 − ω1| < ε1, |ω2 − ω2| < ε2} ∩W ,

we have
B1(ω, ε) ∩W ∩Q2 6= ∅.

To see this fact let N ∈ N ∈ Nω1,ω2 defined in (3.17), then from Lemma 3.1
jN ∈ Nω1,ω2 .

Notice that all ω ∈ Q2 such that |ω1 − ω1| < 1
2j1kN

and |ω2 − ω2| < 1
2j2nN

with j1 ≥ 1
2ε1kN

and j2 ≥ 1
2ε2kN

are in B1(ω, ε) ∩W ∩Q2 since

R⌊ω1kN⌋,⌊ω2nN⌋(ψN ) = R⌊ω1kN⌋,⌊ω2nN⌋(ψN ) > 0.
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2) Let (u1, δ1), (u2, δ2) ∈ W ∩Q2 and

N1 = min{N |N ∈ Nu1,δ1} N2 = min{N |N ∈ Nu2,δ2} N⋆ = lcm(N1, N2).

From above it follows that jN⋆ ∈ Nu1,δ1 ∩Nu2,δ2 for all positive integer j and
there exist input sequences u1,u2 ∈ Zk2((D)) such that

wH(u1|[0,N1−1]) = u1kN1 wH (ψN1(u1)) = δ1nN1

and

wH(u2|[0,N2−1]) = u2kN2 wH (ψN2(u2)) = δ2nN2.

To see that W is convex, it is sufficient to prove that

(ϑu1 + (1− ϑ)u2, ϑδ1 + (1− ϑ)δ2) ∈ W ∀ϑ ∈ [0, 1] ∩Q.

Consider j1, j2 such that j1N1 = j2N2 = N⋆ and the following input sequences

w1(D) = u1(D) ∨N1 D
N1u1(D) ∨2N1 . . . ∨(j1−1)N1

D(j1−1)N1u(D),

w2(D) = u2(D) ∨N2 D
N2u2(D) ∨2N2 . . . ∨(j2−1)N2

D(j2−1)N2u(D).

Let q be an integer such that qϑ ∈ N then the sequence

v = w1∨N⋆ ...∨(qϑ−1)N⋆D(qϑ−1)N⋆

w1∨qϑN⋆DqϑN⋆

w2∨(qϑ+1)N⋆ ...∨qN⋆−1D
qN⋆−1w2

has the following properties

wH(v|[0,qN⋆−1]) = (ϑu1+(1−ϑ)u2)qkN⋆ wH (ψqN⋆(v)) = (ϑδ1+(1−ϑ)δ2)qnN⋆.

We conclude qN⋆ ∈ Nϑu1+(1−ϑ)u2,ϑδ1+(1−ϑ)δ2 and ϑ(u1, δ1) + (1− ϑ)(u2, δ2) ∈
W .

3) We now show that the region W is also closed.
From equation (3.13) (u, δ) ∈ W if and only if there exist (α, β) ∈ (0, 1)2

such that the following problem is feasible

∑

i,j,l

λi,j,l = 1,
∑

i

iλi,j,l =
uk

α
,

∑

j

jλi,j,l =
δn

α
,

∑

k

lλi,j,l =
β

α
.

(3.18)

Notice that λi,j,l represents the limit fraction of error events in a linear fashion
with input weight i, output weight j and length l. Equivalently, (u, δ) ∈ W if
and only if there exist α, β ∈ [0, 1] for which the following decision problem is
feasible:

Φλ =

(
1,
uk

α
,
δn

α
,
β

α

)T
λ � 0, (3.19)



3.5. Proofs 43

where the region of u and δ for which (3.18) is feasible is closed. To see this
fact, consider the dual problem of 3.19.

ΦT ζ � 0

(
1,
uk

α
,
δn

α
,
β

α

)
ζ > 0 (3.20)

By Farka’s lemma [72], (3.19) and (3.20) are strong alternatives, which means
that exactly one of them holds (i.e. either 3.19 or 3.20 is feasible but not both).
On the other hand, the region of (u, δ) for which (3.20) is feasible is clearly
an open set (notice that Φ is independent on α, β, u, δ), so that the region for
which (3.18) is feasible is closed.

4) Let ω1,ω2 ∈ W and λ ∈ [0, 1]. Since W ∩ Q is dense in W (see point
1)) and Q ∩ [0, 1] in [0, 1], there exist sequences λm ∈ Q,ω1

m,ω
2
m ∈ W ∩ Q

such that λm → λ, ω1
m → ω1 and ω2

m → ω2. As W ∩ Q is convex, then
λmω1

m + (1− λm)ω2
m ∈ Q ∩W and

λmω1
m + (1− λm)ω2

m
m→∞−→ λω1 + (1− λ)ω2 ∈ W

follows from the fact that W is closed and W is clearly convex.

Now to get a closed form expression for the asymptotic spectral function
G(u, δ) we use the multidimensional saddle point method for large powers. Be-
fore illustrating this method, we fix some notation and definitions.

Given a function F (x) of class C2 of η variables x = (x1, . . . , xη) define the
following operators:

∆i[F ](x) := xi
∂ lnF

∂xi
=
xi
F

∂F

∂xi
∀i ∈ {1, . . . η} (3.21)

Γi,j [F ](x) := xj
∂ (∆i[F ](x))

∂xj
∀i, j ∈ {1, . . . η}. (3.22)

Theorem 3.4. [Multidimensional saddle point method for large powers] Let
S(x) and F (x) power series of the type

S(x) =
∑

l∈N
η
0

Slx
l =

∑

l∈S

Slx
l

F (x) =
∑

k∈N
η
0

Fkx
k =

∑

k∈F

Fkx
k

where x = (x1, . . . , xη), x
k =

∏η
i=1 x

ki
i , and

F := {k ∈ N
η
0 |Fk > 0} S := {l ∈ N

η
0 |Sl > 0} .

Suppose F has the following properties:
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(P1) Fk ∈ N0 for every k, F0 > 0 and |F | ≥ 2.

(P2) There exists C ∈ R+ and s ∈ N such that Fk ≤ C|k|s for every k.

(P3) There exists a finite subset F0 ⊆ F and k1, . . .kl ∈ N
η
0 such that:

(P3a) F ⊆ {k0 +
∑l
i=1 tik

i | k0 ∈ F0, ti ∈ N}.
(P3b) There exist k̃i ∈ F for i = 1, . . . , l such that k̃i+ tki ∈ F for every

t ∈ N0.

(P4) F generates Zν as an Abelian group.

Assume S satisfies the following conditions:

(P5) Sl ∈ N0 for every l, S0 > 0 and |S | ≥ 2.

(P6) There exists a finite subset S0 ⊆ S such that:

(P6a) S ⊆ {l0 +∑l
i=1 tik

i | l0 ∈ S0, ti ∈ N}.
(P6b) There exist l̃i ∈ S for i = 1, . . . , l such that l̃i + tki ∈ S for every

t ∈ N0.

Consider αn and ωn such that there exist α and ω ∈
◦

co(F ) with |αn−α| =
O(n−1) and ||ωn − ω|| = O

(
n−1

)
when n→ ∞. Let

N = {n ∈ N|ωnαnn ∈ Nη, αnn ∈ N}.

Then we have for n→ ∞ such that n ∈ N

coeff{S(x)[F (x)]αnn,xωnαnn} =
S(xω)√

(2παnn)ν |Γ(xω)|
[F (xω)]

αnn

xωnαnn
ω

(
1 +O

(
n−1/10

))

(3.23)
and

lim
n∈N

1

n
ln (coeff{S(x)[F (x)]αnn,xωnαnn}) = α lnF (xω)− α ω · lnxω (3.24)

where xω ∈ (R+)η is the unique solution to ∆(x) = ω. Moreover, the conver-
gence in (3.24) is uniform in α and ω.

Theorem 3.4, whose proof is rather technical and therefore deferred to Ap-
pendix A, may be thought of as a generalization of [52, Thm. 2] and [21, Lemma
D.14]. There, only the case when the generating function is a power of a mul-
tivariate polynomial with non-negative coefficients was considered. Theorem
3.4 covers a more general class of generating functions, which includes the case
treated in [52, Thm. 2]. Moreover, our modification allows to estimate the
order of magnitude of a (convergent) sequence of coefficients in large powers of
multivariate functions and unveils the fundamental role played by ν.
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Lemma 3.2. Let F (x, y, z) as defined in (3.4). Then (P1)-(P3) hold true.

The power series Ẽ(x, y, z) in (3.3) and (1− z)−1 satisfy properties (P5)-(P6).

Proof. The condition F0 > 0 is obtained by taking common factors out. Prop-
erties (P1)-(P2) can be verified trivially and we only prove condition (P3).

Let G = (V , E) be the directed graph associated to the trellis of the convolu-
tional encoder, where V = {v1, v2, . . . vµ} is a finite set of vertices representing
states of the convolutional encoder and E ⊆ V × V with (vi, vj) ∈ E if there
is one step transition from state vi to state vj . Suppose now that a label is
assigned to every edge in the graph. If e = (vi, vj) ∈ E , a label is assigned

to the edge f(e) = xk = xk11 x
k2
2 x

k3
3 where k1 is the weight of input sequence

that takes the machine from state vi to state vj , k2 is the corresponding output
weight and k3 is the length of the input sequence. A path in such a graph is
a sequence of edges of the form p = (v0, v1), (v1, v2), . . . , (vn−1, vn). Such a
path is said to be a path of length n and it is usually represented by the string
(v0, v1, . . . vn). Let us define the label of a path the product of the labels of the

component edges f(p) =
∏
e∈p f(e) =

∏
e∈p x

ke = x
∑

e∈p ke . We denote with
kp =

∑
e∈p ke.

With this formalism the generating function F (x) is the sum of the labels
of all paths starting and ending in the zero state. A cycle c ∈ Cv|v1,...,vn is
a sequence starting and ending in v with transitions in V \ {v, v1, ..., vn}. Let
Cmin be the set of all minimal cycles, namely all cycles starting and ending in
a generic vertex v and taking distinct values in between. Since the encoder has
a fixed memory, then |Cmin| is finite. Given a path p we denote with C

p
v|v1,...,vn

(and C
p
min) the set of all sequences in Cv|v1,...,vn (and C s

min) included in p.
The following lemma states that every multi-index k ∈ F 6= {k|Fk > 0}

can be written in terms of minimal cycles.
Let k ∈ F . Then there exists a sequence s = (0, v1, ..., vn, 0) such that

f(s) = xk. If vi are all distinct then s ∈ Cmin, k = ks and the assertion is
verified. Otherwise f(s) =

∏
c0∈C s

0
f(c0).

f(s) =
∏

c0∈C s
0

∏

v∈c0

∏

c1∈C s
v|0

f(c1)

If C s
v|0 = Cmin for all v we conclude the thesis. If this is not the case, proceed

as before:

f(s) =
∏

c0∈C s
0

∏

v∈c0

∏

c1∈C s
v|0∩C s

min

f(c1)
∏

c′1∈C s
v|0\C s

min

f(c′1)

The process halts after at most |V| = µ number of steps and we get

f(s) =
∏

c0∈C s
0

∏

v1∈c0

∏

c1∈Cv1|0∩Cmin

f(c1) . . .
∏

vµ∈cµ−1

∏

cµ∈Cvµ|vµ−1,...,v1,0∩Cmin

f(cµ).
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Notice that s is finally decomposed exlusively in terms of minimal cycles. Define
tc be the number of times the cycle appears in the sequence s and we conclude

f(s) =
∏

c∈Cmin

f(c)tc = x
∑

c tckc .

Similar arguments are used to prove conditions (P5)-(P6) for Ẽ(x, y, z).
Finally (P5)-(P6) are trivially verified for (1 − z)−1.

Proof of Theorem 3.2. If (u, δ) /∈ W then we have trivially that

R⌊ukN⌋,⌊δnN⌋(ψN ) = 0 ∀N ∈ N,

and functions GN are not defined in those points, and we set conventionally
GN (u, δ) = −∞ ∀N ∈ N.

From Theorem 3.1 (see expressions (3.4), (3.5), and (3.6)) we have

GN (u, δ) ≥ 1

nN
ln coeff

{
L(x, y, z)F (x, y, z)

⌊αN⌋
, x⌊ukN⌋y⌊δnN⌋zN

}
∀α ∈ [0, 1]

=
1

nN
ln coeff

{
1

1− z
F (x, y, z)⌊αN⌋, x⌊ukN⌋y⌊δnN⌋zN

}
+

+
1

nN
ln coeff

{
Ẽ(x, y, z)

1− z
F (x, y, z)

⌊αN⌋−1
, x⌊ukN⌋y⌊δnN⌋zN

}
∀α ∈ [0, 1]

Define now

ωN =

(⌊ukN⌋
⌊αN⌋ ,

⌊δnN⌋
⌊αN⌋ ,

N

⌊αN⌋

)
ω =

(
uk

α
,
δn

α
,
1

α

)

and αN = ⌊αN⌋
N . Notice that ||ω − ωN || = O

(
N−1

)
and |αN − α| = O(N−1).

Since (u, δ) ∈ W , ω ∈
◦

co(F ) and from Lemma 3.2 the hypotheses of Theorem
3.4 are satisfied.

Using Theorem 3.4, we can estimate the function G as follows

lim
N→∞

GN (u, δ) ≥ 1

n
{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα} ∀α ∈ [0, 1]

lim
N→∞

GN (u, δ) ≥ 1

n
max
α∈[0,1]

{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα}

with (xα, yα, zα) solution of system ∆[F ](x, y, z) = (uk/α, δn/α, 1/α), which
is equivalent to system (3.10).
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On the other hand, from Theorem 3.1 (see expression (3.6)) we have ∀(x, y, z) ∈
(R+)3

GN (u, δ) ≤
lnN

nN
+max

α

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋, x⌊ukN⌋y⌊δnN⌋zN
}

≤
lnN

nN
+max

α

{

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋, x⌊ukN⌋y⌊δnN⌋zN
}

+

−
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα] +

+
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα]

}

≤
lnN

nN
+max

α

{

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋, x⌊ukN⌋y⌊δnN⌋zN
}

+

−
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα]

}

+

+
1

n
max

α
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα] .

where the last step follows from Theorem 3.4.
We conclude that

lim
N→∞

GN (u, δ) ≤ 1

n
max
α

[α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα] .

The assertion is then obtained by observing that

(xα, yα, zα) = argmin
x,y,z

{α lnF (x, y, z)− uk lnx− δn ln y − ln z}

(see proof of Lemma A.2).

Proof of Corollary 3.1. The continuity of function G(u, δ) in (u, δ) ∈ W follows
immediately from the expression in (3.8).

We now prove that the function G is also concave in its domain. Notice
that the function

f(u, δ, α) = min
x,y,z

{α lnF (x, y, z)− uk lnx− δn ln y − ln z}

is concave in (u, δ, α) ∈ W × [0, 1] as pointwise minimum over an infinite set of
concave functions:

θf(u1, δ1, α1) + (1− θ)f(u2, δ2, α2) =

= min
x,y,z

[θα1 lnF (x, y, z)− θu1k lnx− θδ1n ln y − θ ln z] +

+ min
x,y,z

[(1− θ)α2 lnF (x, y, z)− (1− θ)u2k lnx− (1− θ)δ2n ln y − (1− θ) ln z]

≤ min
x,y,z

[(θα2 + (1− θ)α2) lnF (x, y, z)− (θu1 + (1 − θ)u2)k lnx+

−(θδ2 + (1− θ)δ2)n ln y − ln z]

= f(θu1 + (1 − θ)u2, θδ1 + (1− θ)δ2, θα1 + (1− θ)α2).
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Let αi = argmax
α

f(ui, δi, α) then

θG(u1, δ1) + (1− θ)G(u2, δ2)

= θmax
α

f(u1, δ1, α) + (1 − θ)max
α

f(u2, δ2, α)

= θf(u1, δ1, α1) + (1− θ)f(u2, δ2, α2)

≤ f(θu1 + (1 − θ)u2, θδ1 + (1− θ)δ2, θα1 + (1− θ)α2)

≤ max
α

f(θu1 + (1− θ)u2, θδ1 + (1− θ)δ2, α)

= G(θu1 + (1− θ)u2, θδ1 + (1− θ)δ2).

We conclude that G(u, δ) is concave in (u, δ) ∈ W .

3.5.3 Finite length approximation of weight distribution

The basic technique in the following proof is a direct application of Theorem
3.4 for multivariate generating functions.

Proof of Theroem 3.3. From Theorem 3.4 we know that for w = ⌊ukN⌋, d =
⌊δnN⌋ and N → ∞

AαNw,d(ψN ) := coeff
{
L(x, y, z)F (x, y, z)αN , xwydzN

}

∼ L(xα, yα, zα)√
(2παN)ν |Γα|

[F (xα, yα, zα)]
αN

xwαy
d
αz

N
α

(3.25)

where (xα, yα, zα) is the solution of system




x
F (x,y,z)

∂F (x,y,z)
∂x = uk

α

y
F (x,y,z)

∂F (x,y,z)
∂y = δn

α

z
F (x,y,z)

∂F (x,y,z)
∂z = 1

α

Assume that AαNw,d(ψN ) attains its maximum in αN then

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ 1

0

AαNw,d(ψN )

AαNN
w,d (ψN )

dα

= AαNN
w,d (ψN )

∫ 1

0

L(xα,yα,zα)√
(2παN)ν |Γα|

[F (xα,yα,zα)]
αN

xw
αy

d
αz

N
α

L(xαN
,yαN

,zαN
)√

(2παNN)ν |ΓαN
|
[F (xαNN ,yαN

,zαNN )]αN

xw
αN

ydαN
zNαN

(1 + o(1))dα

Taking the Taylor expansion of function

KN (α) = −
1

2
ln ((2παN)ν |Γα|)+lnL(xα, yα, zα)+αN lnF (xα, yα, zα)−w ln xα−d ln yα−ln zα

at α = αN we have

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ 1

0

eK
′
N (αN )(α−αN )+ 1

2K
′′
N (α)(α−αN )2(1 + o(1))dα
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According to the assumption that AαNw,d(ψN ) takes its maximum value at α =
αN , we know that K ′

N(αN ) = 0 and

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ ∞

−∞
e−

x2

2σ2 (1 + o(1))dx

where 1
σ2 = −K′′

N(α⋆)
N2 . Since |αN − α⋆| = O(1/N) we have

Aw,d(ψN ) = A
⌊αNN⌋
w,d (ψN )

√
2πσ2(1 + o(1))

∼
√
2πσ2L(xα⋆ , yα⋆ , zα⋆)√
(2π⌊α⋆N⌋)ν |Γα⋆ |

[F (xα⋆ , yα⋆ , zα⋆)]α
⋆N

xwα⋆ydα⋆zNα⋆

(1 + o(1)).

3.6 Concluding remarks

In this chapter we have analyzed the weight distribution of truncated convolu-
tional encoders. In particular, we have derived exact formulæ of weight enu-
merators in terms of generating functions of regular and truncated error events.
We have shown how asymptotic estimates of powers of multivariate functions
with nonnegative coefficients can be used in the analysis of the growth rate of
weight distribution as a function of truncation length. We have investigated
the connection of our estimates with a method previously introduced by Sason
et al. Our estimates are useful for deriving results regarding ML properties
(see [19]) and minimum distance properties of concatenated coding schemes.

We believe that our techniques could be also used to analyze the weight
spectrum of turbo-stopping-sets, a measure of the performance of a binary
turbo decoder on the BEC introduced for turbo-like codes in [73].





Multiple serial turbo-coding

ensemble 4
Brief—In this chapter, the ensembles of multiple-serial turbo codes,
obtained by coupling an outer code with a cascade of m rate-1 re-
cursive convolutional encoders through uniform random interleavers,
are studied. The parameters that make the ensemble asymptotically
good are identified. In particular, it is proved that the average spec-
tral functions of these code ensembles are equal to 0 below a positive
threshold distance δm. Moreover, if m = 2 and the free distance of
the outer encoder df ≥ 3, or if m ≥ 3 and df ≥ 2, then the minimum
distance scales linearly in the code length with high probability and
δm provides a lower bound on the growth rate coefficient.
Finally, under a weak algebraic condition on the outer encoder, it
is proved that the sequence of average spectral functions converge
uniformly, when m → ∞, to a limit function which is equal to the
maximum between 0 and the asymptotic spectra of the classical
linear random ensemble. Consequently the sequence δm converges
to the Gilbert–Varshamov (GV) distance. Combining these results
it is possible to conclude that the normalized minimum distances
of these concatenated coding schemes converge to the GV-distance
when m goes to infinity.

4.1 Introduction and outline of the chapter

In this chapter we study in detail average spectra and minimum distances of
multiple-serial turbo coding ensembles, which are obtained by interconnecting
an outer code with m rate-1 recursive convolutional encoders through uniform
random permutations.

As a first result, we find exact expressions in terms of constituent encoders
and we prove that the asymptotic spectra can be obtained through a dynam-

51
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ical system (dependent on the inner encoder) with initial condition equal to
the asymptotic spectra of the outer encoder. This iterative formula coincides
with those obtained in [46,49,57]. However, its theoretical justification requires
MSP-techniques for weight enumerators of constituent encoders, developed in
the previous chapter. Inspired both by the the tail estimations of [36] and by
the bounding approach used in [46], it is proved that if m ≥ 2 the average spec-
tral functions of these code ensembles are equal to 0 below a strictly positive
threshold distance δm (see Theorem 4.5).

Coupling this study with an ad hoc analysis for the low-weight average
weight enumerators inspired by the the tail estimations of [36], we finally pro-
pose upper bounds to the repartition function of the minimum distance. The
key ingredient in order to prove the achievement of the distance thresholds δm
is MSP-approximation of weight enumerators of constituent encoders, derived
in Theorem 3.2. This allows us to show that if m = 2 and the free distance of
the outer encoder df ≥ 3, or if m ≥ 3 and df ≥ 2, minimum distance scales
linearly in the truncation lengths with high probability (see Theorem 4.6): in
the coding terminology this means that such codes are asymptotically good
with probability close to 1. More precisely, we obtain with high probability
lower bounds on the asymptotic normalized minimum distance of the serial en-
sembles. Proving the tightness of these bounds would require second-moment
estimations for the enumerating functions, and is a problem left for future re-
search. However, numerical results and concentration results available in the
literature for the distance-spectra of regular ensembles of binary LDPC codes
(see [42,43]) make us optimistic about the tightness of our bounds for multiple
concatenated codes as well. Moreover, numerical results suggest that minimum
distance is strictly monotonic increasing in the number of inner encoders. The
theoretical proof is given just in the case of Repeat multiple-accumulate codes
(RAm, see Section 4.8).

Finally, under a weak algebraic condition on the outer encoder, it is proved
that average spectra are equicontinuous (equi-Lipshitz in the case of RAm)
and converge uniformly when m→ ∞ to a limit function which is equal to the
maximum between 0 and the asymptotic spectra of the classical linear random
ensemble (see Theorem 4.7). Consequently the sequence δm converges to the
Gilbert–Varshamov (GV) distance. Combining these results it is possible to
conclude that the normalized minimum distances of these concatenated coding
schemes converge to the GV-distance when m goes to infinity in probability.
These results passes through the use of new mathematical tools which do not
show up in the Markov chain based analysis of average weight enumerators pro-
posed in [44]. In particular we need results coming from non smooth analysis
and fixed points study of non-linear dynamical systems.

The remainder of this chapter is organized as follows. Section 4.2 is devoted
to the description of multiple serial concatenation of rate-1 codes and its weight
structure; then the family of repeat multiple-accumulate codes is introduced as
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example. In Section 4.3 we review main results known in literature. The stress
is given to results collected in [44] and we show how to connect them within our
analysis. Section 4.4 presents, in a formal way, all the original contributions
presented in this chapter together with some numerical results. Sections 4.5,
4.6, and 4.7 are technical sections whose results are proved in details. Finally,
Section 4.8, containing some stronger results in the case of repeat multiple ac-
cumulate codes, completes the chapter.

Preliminary versions of this work have been presented at the ITA-2008
workshop [54], at the ISTC-2010 [61]. The study of RAm ensemble has been
published in [55].

4.2 Problem setting

4.2.1 Ensemble description

In this section, we consider a general class of concatenated coding systems of
the type depicted in Fig. 4.1.

φoutN π1 πmφinLN
φinLN

kN nN nN sLN sLN sLN

Figure 4.1: Coding scheme: Multiple serial concatenated codes.

Fixed the convolutional encoders φout ∈ Zk×n2 (D) and φin ∈ Zs×s2 (D), we
consider their block truncations and we couple them in a multiple serial con-
catenation through permutations πi of length nN (which act on symbols) by
the map composition

S = φinLN
◦ πm ◦ . . . ◦ φinLN

◦ π1 ◦ φoutN . (4.1)

where LN is such that sLN = nN . The resulting code has rate R = k/n.
In order to avoid extremely cumbersome notation, we will at first expose

our results in full detail under some assumptions, and later we will discuss how
most of the assumptions can be weakened.

Assumption 4.1. In our setting we assume that:

• φout is non-catastrophic with free distance dof ;

• φin is non-catastrophic (with parameter µi, see Definition 3.4) and recur-
sive (see Definition 3.5).

• φin has scalar input (s = 1)
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In Theorem 4.7 we will make a further assumption.

Assumption 4.2. The convolutional encoder φout(D) ∈ Z2(D)k×n has all
k-minors invertible.

Let Sm
N be the ensemble of all serial encoders S in (4.1) obtained by choos-

ing π1, . . . , πm with uniform probability over the set of all possible permutations
of nN elements.

Denote with

dmin(S
m
N ) := min

u∈ZkN
2 \{0}

{
wH(φ

in
LN

◦ πm. ◦ ... ◦ φoutN (u))
}
,

We focus on the minimum distance distribution of these coding schemes, namely
on the high-probability behavior of dmin(S

m
N ) as a function of N.

The analysis is undertaken by a detailed study of asymptotic average spectra
of this ensemble.

4.2.2 Weight Enumerators and average spectra

Before showing results known in literature and our contribution, we fix some
notations.

We consider the average output weight enumerators of Sm
N

Ad (S
m
N ) := |Sm

N |−1
∑

S∈S m
N
Ad(S).

They can be expressed in terms of the input-output weight distribution of its
component codes (see [17, 18]). We have the following results.

Proposition 4.1.

A(Sm
N ) = A(φoutN )P(φinLN

)m (4.2)

where P(φinLN
) is a finite dimensional matrix given by

Pw,d(φ
in
LN

) :=
Aw,d(φ

in
LN

)
(
nN
w

) .

The entry Pw,d(φ
in
LN

) can be interpreted as the probability that a randomly
chosen input sequence of weight w is mapped by the inner encoder to an output
sequence of weight d and for this reason is known as input-output weight tran-
sition probability. Notice that P(φinLN

) is thus a stochastic matrix. Consider

the coefficients Pw,d(φ
in
LN

) for w ≥ 1 and d ≥ 1, since the inner encoder is

non-catastrophic (see Assumption 4.1) Pw,d(φ
in
LN

) is zero if w > µid.
We denote N-th spectral function of Sm

N

r
(m)
N (δ) :=

1

nN
lnA⌊δnN⌋(S

m
N ), for δ ∈ [0, 1].

and the asymptotic spectral function
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r̂(m)(δ) := lim supN→∞ r
(m)
N (δ), for δ ∈ [0, 1].

Example 4.1 (Repeat Multiple-Accumulate codes). Repeat Multiple-Accumulate
codes, denoted by RAm and introduced by Jin and McEliece in [48], are the
simplest non trivial example of a serial concatenation of rate-1 codes through
uniform random interleavers, where the outer encoder is the repeat code and
inner encoders are truncated recursive convolutional accumulate codes.

Given q ∈ N and N ∈ qN, the outer encoder RepqN : ZN2 → Z
qN
2 repeats the

information block q-times

RepqN ([v1, . . . , vN ]) = [v1, . . . , vN , . . . , v1, . . . , vN ]︸ ︷︷ ︸
q times

.

and the accumulator AccN : ZqN2 → Z
qN
2 can be interpreted as the block encoder

defined by

AccN ([u1, . . . , uqN ]) = [u1, u1 + u2, . . . , u1 + . . .+ uqN ].

In this case A(RepqN ) and P(AccN ) can be explicitly computed (see Section
3.4) and we obtain

Aw,d(Rep
q
N ) =

{ (
N
w

)
qw = d

0 otherwise

Pw,d(AccN ) =





1 w = h = 0
(qN−d
⌊w/2⌋)(

d−1
⌈w/2⌉−1)

(qNw )
w ≥ 1 and d ≥ 1

0 otherwise.

Consider the coefficients Pw,d(AccN ) for w ≥ 1 and d ≥ 1 and notice that
Pw,d(AccN ) is non-zero if and only if

⌈w/2⌉ ≤ d and ⌊w/2⌋ ≤ n− d,

as one of the binomial coefficients in the numerator is zero if either condition
is not satisfied.

4.3 Previous results: analysis and design

In this section we state previous results on the minimum distance.
Kahale and Urbanke show that for m = 1 the typical minimum distance of

such coding schemes scales only sublinearly in N with probability approaching
one. Precisely, they prove the following result.

Theorem 4.1 (Theorem 2.a in [36]). If d = o(Nβ) for N → ∞ with β =
1− 2/dof , then there exists a constant C (independent on d and N) such that

P
(
dmin(S

1
N ) < d

)
≤ Cd

dof
2 N1−

dof
2 + o

(
d

dof
2 N1−

dof
2

)
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and so, in particular, P
(
dmin(S

1
N ) < d

) N→∞−→ 0.

Notice that the free distance dof plays a crucial role in the estimation of the
minimum distance: the more the parameter dof is large, the more the minimum
distance growth rate is close to be linear with high probability.

The picture of dmin(S
1
N ) given in Theorem 4.1 is completed in [36] by prov-

ing that if d/Nβ → ∞ then P
(
dmin(S

1
N ) < d

)
→1 when N → ∞ (see Theorem

2.b in [36]). Their proof, based on a second-order method, does not under-
line how fast is the convergence. However a much stronger result holds true:
deterministically (i.e. for any given permutation π), the minimum distance
cannot grow more than CNβ lnN for some constant C. This deterministic up-
per bound is obtained by Bazzi, Mahdian and Spielman for Repeat-Convolute
codes (see Theorem 2 in [45]), and generalized later in [74] for a more general
setting. We state formally this result.

Theorem 4.2 (Theorem 2 in [74]). There exist constants C,N0 ∈ N such that
for all N ≥ N0 the following inequality is true

dmin(S
1
N ) ≤ CNβ ln(N).

In the theoretical analysis of the minimum distance distribution for m ≥ 2
we can distinguish two main lines. On the one hand, we take fixed truncation
lengths and we let m go to ∞. On the other hand, fixed the number of inner
encoders, we study the minimum distance as a function of N .

The first approach is exploited in [44]. In particular, the authors prove the
following theorem with arguments coming from the spectral theory of stochastic
matrices, applied to P(φinLN

).

Theorem 4.3 (Theorem 3 in [44]). For every N ∈ N, it holds

Ad (S
∞
N ) := lim

m→∞
Ad (S

m
N ) =

{
1, if d = 0(
nN
d

)
2kN−1
2nN−1 , if d ≥ 1.

(4.3)

Notice that expressions (2.11) and (4.3) are not identical. The main dif-
ference between them comes from the fact that all of the encoders in Sm

N are
invertible for all m, whereas the LN contains a small fraction of noninvertible
encoders. However, both ensembles behave quite similarly: it can be verified
that for any ǫ > 0 there exists N0 such that ∀N ≥ N0

|Ad (LN )−Ad (S
∞
N ) | < ǫ.

Theorem 4.3 yields the following result.

Corollary 4.1. There exists {mN}N∈N such that for any ǫ > 0

P (dmin(S
mN

N ) < (δGV − ǫ)N)
N→∞−→ 0.
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Proof. Fix η such that 0 < η < 1/21−R. It follows from Theorem 4.3 that, for
every N and d, there exists mN (d) such that

∣∣Ad(Sm
N )−Ad(S

∞
N )
∣∣ ≤ ηN ∀N ∈ N, ∀d ≥ 1, ∀m ≥ mN (d)

Let now mN := max{mN(d) : 1 ≤ d ≤ N}. Then,

∣∣Ad(SmN

N )−Ad(S
∞
N )
∣∣ ≤ ηN ∀N ∈ N, ∀d ≥ 1.

Equivalently,

ln
(
Ad(S

∞
N )− ηN

)

nN
≤ lnAd(S

mN

N )

nN
≤ ln

(
Ad(S

∞
N ) + ηN

)

nN
∀N ∈ N, ∀d ≥ 1 .

Denoting r
(mN )
N (δ) = 1

nN lnA⌊δnN⌋(S
mN

N ) we have that

r
(mN )
N (δ) ≥ lnA⌊δnN⌋(S ∞

N )

nN
+

1

nN
ln

(
1− ηN

A⌊δnN⌋(S ∞
N )

)
(4.4)

r
(mN )
N (δ) ≤ lnA⌊δnN⌋(S

∞
N )

nN
+

1

nN
ln

(
1 +

ηN

A⌊δnN⌋(S ∞
N )

)
(4.5)

From Stirling approximation [62] we get the following estimations

A⌊δnN⌋(S
∞
N ) ≥ exp {nN [H(δ)− (1−R) ln 2]}

nN + 1
(4.6)

A⌊δnN⌋(S
∞
N ) ≤ exp {nN [H(δ)− (1−R) ln 2]}. (4.7)

From (4.4), (4.5), (4.6) and (4.7) we finally obtain

r
(mN )
N (δ) ≥ H(δ)− (1−R) ln 2− 1

nN
ln(nN + 1)

+
1

nN
ln

[
1−

( η

eH(δ)−(1−R) ln 2

)nN
(nN + 1)

]

r
(mN )
N (δ) ≤ H(δ)− (1−R) ln 2

+
1

nN
ln

[
1 +

( η

eH(δ)−(1−R) ln 2

)nN
(N + 1)

]
.

By the way η has been chosen, we have that η/eH(δ)−(1−R) ln 2 < 1 for any
δ ∈ [0, 1]. Therefore we can conclude that

lim
N→∞

r
(mN )
N (δ) = H(δ)− (1−R) ln 2.

The assertion is now a straightforward application of (2.13).
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This result is very encouraging, as it puts into evidence that there exists a
sequence of codes whose minimum distance converges to the GV bound. More-
over Theorem 4.3 holds for all the convolutional inner encoders (recursive or
not recursive). However, this argument does not give any information about
the minimum distance distribution for the case of a finite number of inner en-
coders and it does not guarantee that the typical distance of all serial codes
converges to the GV limit.

For this reason our analysis will concern with the computation of the mini-
mum distance distribution for the specific ensemble of Sm for fixed m.

Regarding this second approach, it is proved in [37] that in the case of RA2
N

the typical minimum distance scales linearly in N with high probability. An
estimation of the linear growth rate is given in [46]. The result is summarized
in the following theorem.

Theorem 4.4 (Section 3.6.7 in [46]). For any arbitrary small ǫ > 0 and η > 0,
there exists a constant C,N0 ∈ N such that for all N ≥ N0 it holds

P
(
dmin(RA

2
N ) ≤ (δ − ǫ)N

)
≤ CN1−⌈q/2⌉+η + o

(
N1−⌈q/2⌉+η

)
,

where δ = (4e8/q)−1. This implies that if q ≥ 3 then P(dmin(RA
2
N ) → 0 when

N → ∞.

If we serially concatenate any encoder, whose minimum distance is growing
like δN , with an accumulate encoder through a uniform random interleaver,
the minimum distance of the new encoder must grow faster than δN/2 as
Ph,d(AccN ) is zero for every d ≤ ⌈h/2⌉. Then Theorem 4.2 implies that if the
minimum distance behaves linearly in N for m = 2 then so must hold for every
m ≥ 2: for any ǫ > 0

P
(
dmin(RA

m
N ) ≤ (δ/2m−2 − ǫ)N

) N→∞−→ 0.

Although this argument allows us to conclude that the typical minimum
distance is growing linearly in N , it does not allow to prove that the minimum
distance grows when m increases. We will improve this estimate and prove
that these thresholds are strictly increasing in m.

4.4 Summary of our results

We summarize our main results in the next theorems.
Theorem 4.5 shows that for m ≥ 2 asymptotic spectral functions exhibit

some different features as compared to the case where m = 1. The main
difference is that for m ≥ 2 there exists a positive point such that the function
is zero below it and positive beyond it.
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Theorem 4.5. Under Assumption 4.1 , there exists a sequence of points
{δm}m∈N such that

max
σ≤δm

{
r̂(m)(σ)

}
= 0,

We have to note that Theorem 4.5 corrects some wrong statements in [56],
partially revised in [59]. Results presented in [56], [57] are affected by some
numerical errors and induce the authors to believe that the spectral function is
negative before some threshold and conclude that such point is the normalized
minimum distance with high probability. Actually, Theorem 4.5 guarantees
that the floor of the spectral functions r̂(m)(δ) is zero. Therefore we can not
apply Lemma 2.2, in order to estimate the minimum distance distribution.

Nevertheless we shall prove the following theorem.

Theorem 4.6. For any arbitrarily small ǫ > 0 and η > 0, there exists a
constant χ > 0 and N0 ∈ N such that for all N ≥ N0 it holds

P

(
dmin(S

m
N )

nN
< δm − ǫ

)
≤ χNαm+η + o

(
Nαm+η

)

where αm = 1−∑m−1
i=1 ⌈dof/2i⌉.

Theorem 4.6 guarantees that, if m = 2 and the free distance of the outer
encoder dof ≥ 3, or if m ≥ 3 and dof ≥ 2, the typical minimum distance scales
linearly in the code length with high probability and the distance threshold δm
is a lower bound of the linear growth.

Let us denote the function

HR
+ (δ) =

{
H(δ)− (1 −R) ln 2 if δ ∈ (δGV , 1− δGV )

0 otherwise.

where δGV = δGV (R) is the GV-distance defined in (2.9).

Theorem 4.7. Under Assumption 4.1 and 4.2 the functions r̂(m)(δ) are equicon-
tinuous in δ ∈ [0, 1] and converge uniformly when m→ ∞ to r̂(∞)(δ) = HR

+ (δ).

By combining Theorem 4.6 and 4.7 together we have that, if we choose an
outer encoder satisfying the algebraic condition in Theorem 3, the sequence of
coefficients of the linear growth δm converges to the limit implied by GV-bound
when m tends to infinity. Notice that the hypothesis on outer encoder is not
very restrictive and includes all block encoders obtained by concatenating to-
gether N successive codewords of a (n, k) block code (as considered in [47,54])
and a huge class of convolutional encoders (see [44, 49]).

The normalized minimum distances δm are listed in Table I for various
Convolutional Multiple-Accumulate (CAm) ensembles (see also Fig. 4.2, 4.3,
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4.4, 4.5) . These numerical results have been found using the MSP-techniques
to compute growth rates of the weight distributions of convolutional encoders.
Notice that convergence looks quite fast: it is sufficient to put a small number of
accumulate codes to get very close to the limit, i.e., to approach the normalized
Gilbert-Varshamov distance.

Summarizing, Theorems 4.5 and 4.6 generalize those in [44], improve the
earlier estimations of the growth rates in [37] and [46] for m = 2, and give a
deeper insight into the problem of the aymptotic spectra of Sm.

The achievability of the Gilbert-Varshamov limit when m goes to infinity
were conjectured but never analytically proved. Moreover if the inner encoders
are accumulators we can strengthen Theorem 4.7: the asymptotic spectra are
equi-Lipshitz and form a monotonic decreasing sequence in m.

In Sections 4.5, 4.6, and 4.7 we shall prove respectively Theorem 4.5, 4.6
and 4.7 through intermediate steps.

4.5 Spectral function analysis

This section is devoted to the study of the asymptotic spectral functions for a
fixed number of inner encoders m.

4.5.1 Dynamical system formulation

Let define Ψ : C ([0, 1]) −→ C ([0, 1]) as follows

Ψ[g](δ) = max
0≤u≤1

{g(u) + f(u, δ)}, ∀δ ∈ [0, 1] (4.8)

where

fN(u, δ) :=
1

nN
lnP⌊unN⌋,⌊δnN⌋(φ

in
LN

)

and

f(u, δ) := lim sup
N→∞

fN(u, δ) (4.9)

From the fact that Pw,d(φ
in
LN

) represents a probability, it follows that both
functions fN and f are not positive.

Starting from (4.2) it can be easily seen that the sequence of asymptotic
spectral functions can be obtained recursively by applying the operator Ψ to
the initial condition

r̂(0)(δ) := lim sup
N→∞

1

nN
lnA⌊δnN⌋(φ

out
N ). (4.10)

However, the theoretical justification of this iterative formula requires to
prove uniformity in the convergence of limits in (4.9) and (4.10). This difficulty
can be overcome by applying MSP-techniques to the weight enumerators of
constituent encoders, devised in the previous chapter.
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Table 4.1: Numerical values of linear growth rates δm for various ensembles and m = 2, 3, 4 (C(n, k)
outer code, δm normalized distance threshold withm accumulate codes, δGV normalized GV-distance).
Rep=Repeat, Par=Single parity check, Ham=Hamming code, Hame=extended Hamming,
Mlc=Maximum length code

φout Rep-(2, 1) Rep-(3, 1) Par-(3, 2) Par-(4, 3) Ham-(7, 4) Hame-(8, 4) Mlc-(3,2)
(
1, 1

1+D

) (
1 +D2, 1 +D +D2

)

δ2 – 0.133 – – 0.061 0.090 – 0.083 0.104

δ3 0.103 0.174 0.054 0.035 0.080 0.110 0.055 0.109 0.110

δ4 0.109 0.174 0.061 0.042 0.087 0.110 0.061 0.110 0.110

δGV 0.110 0.174 0.061 0.042 0.087 0.110 0.061 0.110 0.110
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Theorem 4.8.

r̂(m+1) = Ψ
[
r̂(m)

]
= Ψm

[
r̂(0)
]
. (4.11)

Proof. From expression (4.2) we get

r
(m)
N (δ) ≥ r

(m−1)
N (u) + fN(u, δ) ∀u ∈ [0, 1]

and by letting N go to infinity

r̂(m)(δ) ≥ r̂(m−1)(u) + f(u, δ) ∀u ∈ [0, 1]

r̂(m)(δ) ≥ max
0≤u≤1

{
r̂(m−1)(u) + f(u, δ)

}
= Ψ[rm−1](δ).

We prove now by induction on m that r
(m)
N (δ) converges uniformly in δ ∈

[0, 1] to Ψ[rm−1](δ) when N → ∞.

From Theorem 3.3 we have that r
(0)
N and fN converge to r̂(0) and f , respec-

tively, when N → ∞.

By inductive step, assume r
(m)
N converges uniformly to r̂(m) when N → ∞.

Starting from (4.2) we have

r
(m+1)
N (δ) ≤ ln(nN)

nN
+ max
u∈[0,1]

{r(m)
N (u) + fN(u, δ)}

from which
∣∣∣∣r

(m+1)
N (δ)− max

0≤u≤1

[
r̂(m)(u) + f(u, δ)

] ∣∣∣∣ ≤

≤ 1

nN
ln(nN) +

∣∣∣∣ max
0≤u≤1

[
r
(m)
N (u)− r̂(m)(u)

]∣∣∣∣+
∣∣∣∣ max
0≤u≤1

[fN(u, δ)− f(u, δ)]

∣∣∣∣

≤ 1

nN
ln(nN) + max

0≤u≤1

∣∣∣r(m)
N (u)− r̂(m)(u)

∣∣∣+ max
0≤u≤1

|fN(u, δ)− f(u, δ)| .

By letting N go to infinity we get

0 ≤ lim sup
N→∞

max
δ∈[0,1]

|r(m+1)
N (δ)− max

0≤u≤1

[
r̂(m)(u) + f(u, δ)

]
| ≤

≤ lim sup
N→∞

1

nN
ln(nN) + lim sup

N→∞
max
0≤u≤1

∣∣∣r(m)
N (u)− r̂(m)(u)

∣∣∣+

+ lim sup
N→∞

max
δ∈[0,1]

max
0≤u≤1

|fN (u, δ)− f(u, δ)| = 0

and the assertion is verified also for the case m+ 1.

Notice that:

• the dynamical system we have defined depends exclusively on the inner
encoder and it would be different if we replace it with another convolu-
tional encoder;
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• the influence of the outer encoder is in the initial condition.

Moreover, we have that the asymptotic spectral functions are uniformly
bounded and continuous.

Proposition 4.2. The following facts are true:

1. the sequence of functions {r̂(m)}m∈N is uniformly bounded. In particular
the following inequalities hold

0 ≤ r̂(m)(δ) ≤ Rln 2 ∀δ (4.12)

2. Functions r̂(m)(δ) are continuous in δ

Proof. 1. We prove it by induction on m. Consider the case with m = 0
and notice that r̂(0)(δ) ≥ 0 (see Theorem 3.2) and r̂(0)(δ) ≤ R ln 2 (the outer
encoder has rate R).

Suppose now that the inequalities hold also for m. Using the inductive
assumption on r̂(m) and the fact that f is non-positive, we get that the lower
bound holds also for m+ 1

r̂(m+1)(δ) ≥ max
u

{0 + f(u, δ)} = 0 .

On the other hand, as f(u, δ) is non-negative

r̂(m+1)(δ) ≤ max
0≤u≤1

{r̂(m)(u)} ≤ R ln 2

where the last inequality is obtained using the inductive hypothesis. The proof
is thus complete.

2. The asymptotic spectral function r̂(0)(δ) is continuous in its domain,
as the asymptotic spectral function of a convolutional encoder is continuous
(see Corollary 3.1). The general case can be proved by induction on m, using
expression (4.11) and the continuity of f(u, δ) in both variables (consequence
of Corollary 3.1).

Next two lemmas have been proved in [36] just for systematic terminated
convolutional codes but the general case is a straightforward generalization
(see [46]).

Lemma 4.1 (Lemma 3 in [36]). Let ψ ∈ Z2(D)k×n be non-catastrophic. If
⌊d/df (ψ)⌋ ≤ N/2, there exists a constant χ1 such that

Ad(ψN ) ≤ χd1
(

N
⌊d/df (ψ)⌋

)

Lemma 4.2 (Lemma 1 in [36]). Given a non catastrophic and recursive con-
volutional encoder ψ, there exist constants χ2, η such that
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Aw,≤d(ψN ) ≤ χw2
(

N
⌊w/2⌋

)(
ηd

⌈w/2⌉
)

Lemma 4.3. Under the Assumption 4.1, there exists a constant C > 0 such
that

lim
δ→0+

r̂(1)(δ)

δ
≤ C.

Proof. It follows immediately from expression in (4.2), estimating the enumer-
ating coefficients of the constituent encoders with Lemmas 4.1 and 4.2, so that
we get there exist constants η, χ1, χ2, χ, C independent on w, d,N

A≤d(S
1
N ) =

µid∑

w=dof

Aw(φ
out
N )

Aw,≤d(φinLN
)

(
nN
w

)

≤
µid∑

w=dof

χw1

(
N

⌊w/dof ⌋

)
χw2

(
LN

⌊w/2⌋
)(

ηd
⌈w/2⌉

)
(
nN
w

)

≤
µid∑

w=dof

(
N

⌊w/dof⌋

)(
χ
d

nN

)⌈w
2 ⌉

If d/nN < 1/χ then

A≤d(S
1
N ) ≤ dof

⌊µid/d
o
f⌋∑

j=1

(
N

j

)(
χ
d

nN

) jdof
2

≤


1 +

(
χ
d

nN

) dof
2



N

− 1

from which it follows that

r̂(1)(δ)

δ
≤ Cδd

o
f/2−1 + o

(
δd

o
f/2−1

)
δ→0+−→

{
C if dof = 2

0 if dof ≥ 3

where C is a constant independent on N .

Theorem 4.9. Under the Assumption 4.1, if m ≥ 2 there exists a threshold
δ ∈ (0, 1/2) such that

max
σ≤δ

{
r̂(m)(σ)

}
= 0

Proof. We prove the assertion by induction on m.
As initial case we can take m = 2. From Lemma 4.2 and Stirling’s approxi-

mation [62] there exist constants η, κ such that

F (u, δ) = max
σ≤δ

{f(u, σ)} ≤ δηH

(

u

2δη

)

+ uκ+H(u/2) −H(u).

As F (0, δ) = f(0, δ) = 0 it follows that there exists a constant c such that

lim sup
u→0+

F (u, δ)

u
≤ 1

2
ln δ + c+ o(1) δ → 0.
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and by Lemma 4.3 we have for any sufficiently small δ

lim
u→0+

r̂(1)(u) + F (u, δ)

u
< 0 ∀u ∈ (0, µiδ).

Being r̂(1)(0) + f(0, δ) = 0, the assertion is verified for m = 2.
For the inductive step, assume the statement is true for m: there exists a

threshold δ̃ ∈ (0, 1/2) such that maxσ≤δ̃
{
r̂(m)(σ)

}
= 0. If we take δ = δ̃/µi ∈

(0, 1/2) we have

max
σ≤δ

{
r̂(m+1)(σ)

}
= max

σ≤δ̃/µi

{
max
u≤µiσ

[r̂(m)(u) + f(u, σ)]

}

= max
u≤δ̃

{
r̂(m)(u) + max

σ≤δ̃/µi
[f(u, σ)]

}
= 0

where the last equality follows from the inductive hypothesis and from negativ-
ity of function f .

Define the sequence of points {δ}m≥1 such that

δm = max{ǫ ∈ [0, 1/2) : max
σ≤ǫ

r̂(m)(σ) = 0}. (4.13)

Proposition 4.3. r̂(m)(δ) ≥ HR
+ (δ), ∀δ.

Proof. From Theorem 3.3 we have that r̂(0)(δ) ≥ H(δ) − (1 − R) ln 2 for all δ.
The general case can be proved by induction on m. Putting together this fact
with point 1. of Proposition 4.2 we get the assertion.

Corollary 4.2. Let {δm}m∈N be the sequence defined in (4.13). We have that
δm ≤ δGV , ∀m.

It can actually be shown that the sequence of points {δm} is monotonic
and strictly increasing in the case of Repeat-convolute codes (see Section 4.8
for details).

We have to note that Theorem 4.5 corrects some wrong statements in [56],
partially revised in [59]. Indeed, the authors in [56] overlook the fact that the
maximizing value of

G(m)(u, δ) = r̂(m−1)(u) + f(u, δ)

with respect to the variable u can occur on the boundary. In fact, they only
verify numerically that the function at the local maximum is negative. There-
fore they claim that the spectral function is negative before some threshold
δm and conclude that such point δm is the normalized minimum distance with
high probability.
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4.6 Estimation of minimum distance distribution

As we have already noticed, the floor of the spectral functions is zero and we can
not apply Lemma 2.2, in order to estimate the minimum distance distribution.

We prove that ∀ǫ > 0 the probability of the event {dmin(S
m
N ) ≤ (δm−ǫ)nN}

decreases to zero polinomially in N . Inspired by asymptotic techniques devised
in [19], we split the computation of the probability into two parts. The first
part considers the contribution of the codewords with small weight in the last
inner encoder h < hN and the second part refers to those codewords with
weight h ≥ hN . The sequence {hN}N∈N can be chosen in such a way that the
first term dominates the behavior of the overall probability.

The bounding approach in the following lemma has been proposed in the
case of Convolutional-accumulate codes [46,55] and we adapt the proof for the
general case.

Lemma 4.4. Let {hN}N∈N be a sequence of integers such that for all ξ > 0

lim
N→∞

hN
N ξ

= 0. (4.14)

Then
hN−1∑

h=1

Ah (S
m
N ) = O

(
Nαm+ξ

)
(4.15)

where αm = 1−∑m
i=1⌈dof/2i⌉.

Proof. We prove the assertion by induction on m. Consider the case m = 1 as
initial step: from Lemma 4.1 and 4.2 we have that there exist constants χ, c
such that

A≤hN

(
S

1
N

)
=

hN∑

h=1

µihN∑

w=dof

Aw(φ
out
N )Pw,h(φ

in
LN

)

=

µihN∑

w=dof

Aw(φ
out
N )

hN∑

h=1

Pw,h(φ
in
LN

)

≤
µihN∑

w=dof

χw
(

N⌊
w
dof

⌋
)
Pw,≤hN (φ

in
LN

)

≤
µihN∑

w=dof

cwN

⌊
w
do
f

⌋ (
hN
N

)⌈w
2 ⌉

≤ µihN max
dof≤w≤µihN

{
N

w
logc N +⌊ w

do
f
⌋
(
hN
N

)⌈w
2 ⌉}
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Choose now an arbitrary small number ξ > 0 and define ξ̂ = ξ
1+2⌈dof/2⌉

.

From (4.14), then we get

lim
N→∞

hN

N ξ̂
= 0.

Notice that

µihN

(
hN
N

)⌈w/2⌉
= µiN ξ̂

(
hN

N ξ̂

)(
hN

N ξ̂N1−ξ̂

)⌈w/2⌉

= µiN ξ̂

(
hN

N ξ̂

)⌈w/2⌉+1

N−(1−ξ̂)⌈w/2⌉

then we have

µihN max
dof≤w≤µihN

{
Nw/logc N+⌊w/dof⌋

(
hN
N

)⌈w/2⌉}

= N ξ̂ max
do
f
≤w≤µihN

{
µiN

w
logc N +⌊w/dof⌋−(1−ξ̂)⌈w

2 ⌉
(
hN

N ξ̂

)⌈w
2 ⌉+1

}
.

Let C > 0 be a constant. Since hN/N
ξ̂ N→∞−→ 0, we have that for w ≥ dof and

N large enough

µi
(
hN

N ξ̂

)1+⌈w/2⌉
≤ µi

(
hN

N ξ̂

)1+⌈dof/2⌉
≤ C.

Also for dof ≤ w ≤ µihN and N large enough

w

logcN
+

⌊
w

dof

⌋
− (1− ξ̂)

⌈w
2

⌉
≤
⌊
w

dof

⌋
− (1− 2ξ̂)

⌈w
2

⌉
≤ 1− (1− 2ξ̂)

⌈
dof
2

⌉
.

Hence, for fixed C > 0 and for N large enough we get that

hN∑

h=1

Ah(S
1
N ) ≤ µihN max

dof≤w≤µihN

{
Nw/logcN+⌊w/dof⌋

(
hN
N

)⌈w/2⌉}

≤ CN ξ̂+1−(1−2ξ̂)⌈dof/2⌉

= CN1−⌈dof/2⌉+ξ̂(1+2⌈dof/2⌉)

= CN1−⌈dof/2⌉+ξ

Assume now that this statement is true for the case m− 1: we have

hN∑

h=1

Ah(S
m
N ) =

hN∑

h=1

µihN∑

w=1

Aw(S
m−1
N )Pw,h(φ

in
LN

)

=

µihN∑

w=1

Aw(S
m−1
N )

hN∑

h=1

Pw,h(φ
in
LN

).
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Let now ξ > 0 be an arbitrary small number and ξ̂ = ξ/(1 + 2⌈dof/2m⌉).
From inductive hypothesis we have that for fixed C > 0 and for large enough
N

µihN∑

h=1

Ah(S
m−1
N )) ≤ CN1−∑m−1

i=1 ⌈dof/2i⌉+ξ̂

It follows that

hN∑

h=1

Ah(S
m
N ) ≤ CN1−∑m−1

i=1 ⌈dof/2i⌉+ξ̂
µihN∑

w=⌈dof/2m−1⌉
cw
(
hN
N

)⌈w/2⌉

≤ CN1−∑m−1
i=1 ⌈dof/2i⌉+ξ̂µihN max

⌈dof/2m−1⌉≤w≤µihN

cwN−⌈w/2⌉h⌈w/2⌉N

≤ CN1−∑m
i=1⌈dof/2i⌉+ξ.

Then the statement is proved also for m.

Lemma 4.5. There exists a constant χ (independent on N) such that

r
(m)
N (δ) ≤ χ

lnN

N
+ r̂(m)(δ)

Proof. We give the proof by induction on m. As an initial step, we take m = 0:
by using Theorem 3.1, 3.3 and 3.4 we get there exists χ such that

r̂
(0)
N (δ) =

1

nN
lnA⌊δnN⌋(φ

out
N ) ≤ χ

lnN

N
+ r̂(0)(δ)

and the statement is trivially verified.
For the inductive step, assume that the statement of this lemma is true for

m− 1: from Stirling approximation [62] we have

Ad(S
m
N ) =

µid∑

h=1

Ah(S
m−1
N )Ph,d(φ

in
LN

) ≤ µid max
1≤h≤µid

{
Ah(S

m−1
N )Ph,d(φ

in
LN

)
}

≤ µid max
h

nN ∈
[

1
nN ,

µid
nN

]

{
enN[r̂

(m−1)( h
nN )+χ lnN

N ](nN + 1)
enN[

1
nN lnAh,d(φ

in
LN

)]

enNH(
h

nN )

}

≤ exp

{
nN

[
max

h
nN ∈[ 1

nN ,µ
i d
nN ]

[
r̂(m−1)

(
h

nN

)
+ f

(
h

nN
,
d

nN

)]
+ χ̃

lnN

N

]}

≤ exp

{
nN

[
r̂(m)

(
d

nN

)
+ χ̃

lnN

N

]}

where the last equality follows from (4.11). Then statement is proved also for
m.
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4.6.1 Proof of Theorem 4.6

Proof. Fix ǫ > 0 and let dN = (δm − ǫ)nN . Pick a sequence of integers
{hN}N∈N satisfying condition (4.14) and such that

lim
N→∞

lnN

hN
= 0. (4.16)

From (2.13) we have

P(dmin(S
m
N ) ≤ dN ) ≤

dN∑

d=1

µid∑

h=1

Ah
(
S

m−1
N

)
Ph,d(φ

in
LN

)

≤
µidN∑

h=1

dN∑

d=1

Ah
(
S

m−1
N

)
Ph,d(φ

in
LN

)

=

hN−1∑

h=1

Ah
(
S

m−1
N

) dN∑

d=1

Ph,d(φ
in
LN

)+

+

µidN∑

h=hN

dN∑

d=1

Ah
(
S

m−1
N

)
Ph,d(φ

in
LN

)

≤
hN−1∑

h=1

Ah(S
m−1
N ) +BmN (4.17)

where the last step is obtained from the fact that P(φinLN
) is a stochastic matrix

and defining

BmN =

µidN∑

h=hN

dN∑

d=1

Ah(S
m−1
N ))Ph,d(φ

in
LN

).

Let Gm(x, y) = r̂(m−1)(x) + max
σ∈[1/nN,y]

f(x, σ).
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From Lemma 4.5 and Stirling approximation [62] we can estimate as follows:

BmN =

µidN∑

h=hN

dN∑

d=1

Ah(S
m−1
N )Ph,d(φ

in
LN

)

≤
µidN∑

h=hN

dN∑

d=1

enNr
(m−1)
N ( h

nN )(nN + 1)
enN[

1
nN lnAd(φ

in
LN

))]

enNH(
h

nN )

≤ (nN + 1)

µidN∑

h=hN

dN∑

d=1

enN[r̂
(m−1)( h

nN )+χ lnN
N +f( h

nN ,
d

nN )]

= N χ̃

µidN∑

h=hN

dN∑

d=1

enN[r̂
(m−1)( h

nN )+f( h
nN ,

d
nN )]

≤ dNN
χ̃

µidN∑

h=hN

enN maxd∈[1/nN,dN/nN][r̂(m−1)( h
nN )+f( h

nN ,
d

nN )]

= N χ̂

µidN∑

h=hN

e
nNG(m)

(
h

nN ,
dN
nN

)

= N χ̂

µidN∑

h=hN

enNG
(m)( h

nN ,δm−ǫ)

For hN ≤ h ≤ µidN it holds that

nNGm(h/nN, δm − ǫ) ≤ hτ.

where

τ = max
hN/(nN)<u≤µi(δm−ǫ)

Gm(u, δm − ǫ)

u

Using the fact that r̂(m−1) and f are both continuous (and so is G) and by the
way δm has been defined (4.13), we obtain that

Gm(u, δm − ǫ) < 0 for u ∈ [hN/(nN), µi(δm − ǫ)].

Hence,

τ ≤ lim
N→∞

Gm(hN/(nN), δm − ǫ)

hN/(nN)
=
∂G(u, δm − ǫ)

∂u
< 0 . (4.18)

We get

BmN ≤ N χ̃

µidN∑

h=hN

eτh ≤ N χ̂ ehNτ

1− eτ
.
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It follows from the condition (4.16) that

BmN ≤ exp [χ̃ lnN + τhN ]

= exp

[
hN

(
χ̃ lnN

hN
+ τ

)]
N→∞−→ 0.

From (4.17) and Lemma 4.4, we conclude that ∀η > 0

P(dmin(S
m
N ) ≤ (δm − ǫ)nN) = O

(
Nαm−1+η

)
, (4.19)

from which, if we choose η sufficiently small, it follows that

lim
N→∞

P(dmin(S
m
N ) ≤ (δm − ǫ)nN) = 0

for m ≥ 3 and q ≥ 2 or m = 2 and q ≥ 3.

4.7 Asymptotic analysis

In Section 4.5 we have studied the properties of the asymptotic spectral function
for a fixed number of inner encoders m. We now analyze the behavior for
m→ +∞.

The dynamical system formulation allows us to track the evolution of the
spectral function as it passes through each inner encoder. Through some tech-
niques of non smooth analysis and the study of fixed points of dynamical sys-
tems, we will be able to study the convergence of the sequence of spectral
functions and to complete the proof of Theorem 4.7.

4.7.1 Spectral function evolution

We start with some simple properties:

Lemma 4.6. Let g, h ∈ C([0, 1]), then,

1. ||Ψ[g]−Ψ[h]||∞ ≤ ||g − h||∞ .

2. If g(δ) ≤ h(δ) ∀δ ∈ [0, 1], then Ψ[g](δ) ≤ Ψ[h](δ) ∀δ ∈ [0, 1] .

3. Ψ[g + C] = C +Ψ[g], for any C ∈ R.

Proof. 1. The result is an immediate consequence of the following fact

Ψ[g](δ) ≤ max
u∈[0,1]

[g(u)− h(u)] + max
u∈[0,1]

[h(u) + f(u, δ)] =

= max
u∈[0,1]

[g(u)− h(u)] + Ψ[h](δ).

2. and 3. are obvious.
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We say that g ∈ C([0, 1]) is a fixed point for Ψ if g = Ψ[g]. It follows from
3. of Lemma 4.6 that, if g is a fixed point for Ψ, then the same holds for g+C.
Another interesting way to modify fixed points is illustrated in the following
result.

Proposition 4.4. If g is a fixed point for Ψ, then g+(x) = [0∨ g](x) is a fixed
point for Ψ.

Proof. Consider the subset of maximizing points

Γ+(δ) = argmax
u∈[0,1]

[g+(u) + f(u, δ)].

For each δ ∈ [0, 1] choose u+(δ) ∈ Γ+(δ). We have

Ψ[g+](δ) = g+(u
+(δ)) + f(u+(δ), δ) =

= f(u+(δ), δ) ∨ [g(u+(δ)) + f(u+(δ), δ)] ≤

≤ f(u+(δ), δ) ∨
{

max
u∈[0,1]

[g(u) + f(u, δ)]

}
=

= f(u+(δ), δ) ∨ g(δ). (4.20)

Suppose now that δ ∈ [0, 1] is such that g(δ) ≤ 0. Then, from (4.20) we
have

0 ≤ Ψ[g+](δ) ≤ f(u+(δ), δ) ∨ g(δ) ≤ 0.

We conclude that Ψ[g+](δ) = 0 = g+(δ).
If instead δ is such that g(δ) > 0, we have

g(u) ≤ g+(u) =⇒ g = Ψ[g] ≤ Ψ[g+].

As f is non-positive, it follows that

g(δ) ≤ Ψ[g+](δ) ≤ f(u+(δ), δ) ∨ g(δ) = g(δ),

and we conclude that Ψ[g+](δ) = g(δ) = g+(δ). This completes the proof.

Proposition 4.5. The following functions are fixed points for Ψ, for any ar-
bitrary constant C:

1. g(δ) = C;

2. g(δ) = H(δ) + C.

Proof. 1. The result follows trivially by noticing that g = 0 is a fixed point for
Ψ as f(u, δ) is non-positive. It then follows from property 3. of Lemma 4.6.

2. Since φinLN
has unitary rate then Im(φinLN

) = ZnN2 then

nN∑

w=1

Aw,d(φ
in
LN

) =

(
nN

d

)
.

It is straightforward to verify that maxu∈[0,1] f(u, δ) = H(δ).
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An important consequence of Propositions 4.4 and 4.5 is that both H(δ)−
(1 −R) ln 2 and HR

+ (δ) = [H(δ)− (1−R) ln 2]+ are fixed points for Ψ.

Proposition 4.6. If all k-minors of ψout(D) ∈ Z2(D)k×n are invertible, then

r̂(0)(δ) ≤ RH(δ) = y(0)(δ).

Proof. Let Cnk be the set of k-combination of the finite set {1, . . . , n} and
x ∈ [0, 1]n such that ||x||1 = nδ. If all k-minors of ψout(D) ∈ Z2(D)k×n are
invertible then

r̂(0)(δ) ≤ 1
n

∧
I∈Cn

k

∑
i∈I H(xi)

or equivalently

r̂(0)(δ) ≤ k
n

∑k
i=1

1
kH(xi) ≤ RH

(
1
k

∑k
i=1 xi

)

where x1 ≤ x2 ≤ · · · ≤ xn and ||x||1 = nδ. Suppose ab absurdo that
∑k

i=1 xi >
kδ then δ < xk ≤ · · · ≤ xn and

nδ =
∑k

i=1 xi +
∑n
i=k+1 xi ≥

∑k
i=1 xi + (n− k)δ

from which we get the contradiction and we conclude the thesis.

From Lemma 4.6 and Proposition 4.3 we get

HR
+ (δ) ≤ r̂(m)(δ) ≤ Ψm

[
y(0)(δ)

]
= y(m)(δ). (4.21)

Theorem 4.10. The following facts are true:

1. {y(m)(δ)}m∈N is decreasing in m.

2. {y(m)}m∈N is a sequence of equicontinuous functions.

3. The sequence {y(m)}m∈N converges uniformly to a limit function y(∞).

Proof. 1. Let us suppose by contradiction that there exists δ ∈ [0, 1] such that
y(1)(δ) > y(0)(δ). Since the function f is non-positive we have that

y(1)(δ) = max
δ≤u≤1−δ

{RH(u) + f(u, δ)}

≤ max
δ≤u≤1−δ

{RH(u)−HR
+ (u)}+Ψ[HR

+ ](δ)

Since the inner encoder has rate equal to 1 we have Ψ[HR
+ ](δ) = HR

+ (δ). We

conclude that y(1)(δ) ≤ y(0)(δ), which contradicts the previous assumption.
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The general case is then proved by induction on m. For the inductive step,
we assume that the statement is true for m: from the recursive expression
(4.11) and inductive hypothesis we have

r̂(m+1)(δ) = max
0≤u≤1

{
r̂(m)(u) + f(u, δ)

}

≤ max
0≤u≤1

{
r̂(m−1)(u) + f(u, δ)

}

= r̂(m)(δ) ∀δ ∈ [0, 1]

and the statement is proved also for m+ 1.
2. From Corollary 3.1 we know that the function f(u, δ) is continuous in

both variables as sum of continuous functions: for any arbitrary ǫ > 0 there
exists η > 0 such that for all |δ − δ̃| < η it holds

f(u, δ̃)− ǫ ≤ f(u, δ) ≤ f(u, δ̃) + ǫ

from which

y(m)(δ) = max
0≤u≤1

[y(m−1)(u) + f(u, δ)]

≤ max
0≤u≤1

[y(m−1)(u) + f(u, δ̃) + ǫ]

= y(m)(δ̃) + ǫ,

and

y(m)(δ) = max
0≤u≤1

[y(m−1)(u) + f(u, δ)]

≥ max
0≤u≤1

[y(m−1)(u) + f(u, δ̃)− ǫ]

= y(m)(δ̃)− ǫ.

Notice that η only depends on f and ǫ and not on m.
3. Since the sequence of functions {y(m)}m≥1 is decreasing in m and is

lower bounded, it converges to the limit function y(∞). Let

am = max
δ∈[0,1]

[y(m)(δ)− y(∞)(δ)] .

Then, the sequence {am}m∈N is monotonically decreasing in m and has a limit
when m→ ∞.

The family {y(m)}m≥1 consists of uniformly bounded equicontinuous func-
tions. Therefore Ascoli Arzelá’s theorem (see [75]) guarantees that there exists
a subsequence {mj}j∈N such that amj → 0 when j → ∞. For the uniqueness
of this limit we conclude that am → 0.

Corollary 4.3. y(∞)(δ) is a fixed point for Ψ.

Proof. It follows from Theorem 4.10, equation (4.11) and Lemma 4.6.
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4.7.2 Analysis of limit function y(∞)(δ)

As we know the family {y(m)}m≥1 consists of a sequence of continuous and
nonnegative functions converging uniformly to the limit function y(∞). The
next proposition characterizes some properties of it.

Proposition 4.7. The following facts are true

1. y(∞)(δ) : [0, 1] → R+ is continuous.

2. There exists δ∞ > 0 such that y(∞)(δ) = 0, ∀δ ≤ δ∞;

Proof. These are trivial consequences of Theorem 4.10.

Notice that we already know a fixed point of Ψ satisfying all properties
stated in Proposition 4.7: it is the function HR

+ (δ). For the moment, from
Proposition 4.2 and Theorem 4.10, we only know that, for any δ ∈ [0, 1],
y(∞)(δ) ≥ [H(δ) − (1 − R) ln 2]+. In the rest of this section we will prove
that they are in fact equal.

Let us define the following function:

t(∞)(δ) :=





max
σ≤δ

y(∞)(σ) ∨max
σ≤δ

y(∞)(1− σ) δ ≤ 1/2

max
σ≤1−δ

y(∞)(σ) ∨ max
σ≤1−δ

y(∞)(1− σ) δ > 1/2
(4.22)

Proposition 4.8. The following facts are true

1. t(∞)(δ) is continuous in δ ∈ [0, 1].

2. t(∞)(δ) = t(∞)(1 − δ).

3. t(∞)(δ) is increasing in δ ∈ [0, 1/2].

Proof. 1. It follows trivially from property 1. in Proposition 4.8. 2. and 3.
follow trivially by definition.

Let

q(u, δ) :=





max
σ≤δ

[f(u, σ)] ∨max
σ≤δ

[f(u, 1− σ)] δ ≤ 1/2

max
σ≤1−δ

[f(u, σ)] ∨ max
σ≤1−δ

[f(u, 1− σ)] δ > 1/2

and define

Υ[g](δ) = max
0≤u≤1

{g(u) + q(u, δ)}, ∀δ ∈ [0, 1].

Proposition 4.9. It holds true

1. Υ[H ](δ) = H(δ)

2. Υ[H(δ) + C] = H(δ) + C
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3. Υ[HR
+ ](δ) = [HR

+ ](δ)

Proof. 1. We have the following equalities

Υ[H ](δ) = max
0≤u≤1

{H(u) + q(u, δ)} = max
0≤u≤1

{
H(u) +

[
max
σ≤δ

f(u, σ) ∨ max
σ≤1−δ

f(u, 1− σ)

]}

= max
0≤u≤1

{
max
σ≤δ

[H(u) + f(u, σ)] ∨ max
σ≤1−δ

[H(u) + f(u, 1− σ)]

}

= max
σ≤δ

{
max
0≤u≤1

[H(u) + f(u, σ)]

}
∨ max
σ≤1−δ

{
max
0≤u≤1

[H(u) + f(u, 1− σ)]

}

= max
σ≤δ

{H(σ)} ∨max
σ≤δ

{H(1− σ)} = H(δ) ∀δ ≤ 1/2.

The equality H(δ) = Υ[H ](δ) follows from the fact that q(u, δ) = q(u, 1− δ).
2. It follows from the fact that q(u, δ) ≤ 0 ∀u, δ.
3. The proof is analogous to that of Lemma 4.4 and is a consequence of

2.

With this formalism we have the following chain of inequalities ∀δ ∈ [0, 1]

Υ[HR
+ ](δ) = HR

+ (δ) ≤ r̂(∞)(δ) ≤ y(∞)(δ) ≤ t(∞)(δ) = Υ[y(∞)](δ) ≤ Υ[t(∞)](δ).
(4.23)

In order to prove Theorem 3, it is sufficient to show that this series of inequal-
ities are in fact equalities.

Define
Γ∞(δ) = argmax

0≤u≤1
{t(∞)(u) + q(u, δ)} (4.24)

Then, for any u ∈ Γ∞(δ) it clearly holds

Υ[t(∞)](δ) = t(∞)(u) + q(u, δ) . (4.25)

We start with a technical result.

Lemma 4.7. The following facts are true.

1. For any δ ∈ (δ∞, 1/2) and u ∈ Γ∞(δ), we have u ∈ [δ, 1 − δ]. Moreover,
δ ∈ Γ∞(δ) if and only if δ ∈ {0, 1/2}.

2. If δn
n→∞−→ δ∞ and, un ∈ Γ∞(δn) is such that un

n→∞−→ u∞, then u∞ ∈
Γ∞(δ∞)

Proof. 1. Since q(u, δ) ≤ 0 for any u and δ, it follows from (4.25) that, neces-
sarily,

t∞(δ) ≤ max
0≤u≤1

{t∞(u) + q(u, δ)} ≤ t∞(u) = t∞(1− u) ∀u ∈ Γ∞(δ).

It now follows by property 2. of Proposition 4.8, that, u ∈ [δ, 1 − δ]. Finally
notice that (4.25) holds with u = δ if and only if q(δ, δ) = 0, and this happens
if and only if δ ∈ {0, 1/2}.
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2. Let ũ ∈ [0, 1], then

t∞(ũ) + q(ũ, δn) ≤ t∞(un) + q(un, δn) .

By letting n→∞ and from the continuity of t∞ and q we get

t∞(ũ) + q(ũ, δ∞) ≤ t∞(u∞) + q(u∞, δ∞) .

This yields the result.

Theorem 4.11.

t(∞)(δ) = HR
+ (δ), ∀δ.

Proof. Take δ ∈ [δGV , 1/2], there exists δ1 ∈ Γ∞(δ) ∩ (δ, 1/2] such that

t(∞)(δ) ≤ t(∞)(δ1) + q(δ1, δ)

= t(∞)(δ1)−HR
+ (δ1) +HR

+ (δ1) + q(δ1, δ)

≤ t(∞)(δ1)−HR
+ (δ1) + Υ[HR

+ ](δ)

= t(∞)(δ1)−HR
+ (δ1) +HR

+ (δ).

from which
0 ≤ t(∞)(δ)−HR

+ (δ) ≤ t(∞)(δ1)−HR
+ (δ1).

Repeating the argument k times we get

0 ≤ t(∞)(δ)−HR
+ (δ) ≤ t(∞)(δk+1)−HR

+ (δk+1).

where δk+1(δ) ∈ Γ∞(δk)) and

0 ≤ t(∞)(δ)−HR
+ (δ) ≤ lim

k→∞

[
t(∞) (δk)−HR

+ (δk)
]
.

Since t(∞) and HR
+ are both continuous, we get

0 ≤ t(∞)(δ)−HR
+ (δ) ≤ t(∞)

(
lim
k→∞

δk

)
−HR

+

(
lim
k→∞

δk

)
.

By the way δk have been constructed we know that the sequence {δk}k∈N, is
upper bounded by 1/2 and increasing in k. Using the fact that δ ∈ Γ∞(δ)
if and only if δ = {0, 1/2}, we conclude it converges to 1/2 and we conclude
t∞(δ) = HR

+ (δ) for every δ ∈ [δGV , 1/2]. Since the functions t∞(δ) and HR
+ (δ)

are both symmetric with respect δ = 1/2, continuous,

t∞(δ) = HR
+ (δ) ∀δ ∈ [δGV , 1− δGV ].

Corollary 4.4. We have

y(∞) = r̂(∞)(δ) = HR
+ (δ)

and consequently δGV = δ∞.
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4.8 A particular case: RAm

Some of the previous results can be strengthen for RAm. This section is de-
voted to the study of the asymptotic spectral functions for a fixed number of
accumulators m in order to estimate thresholds δm.

4.8.1 Average spectral functions

Given δ ∈ [0, 1], define the interval Ωδ = [0, 2δ ∧ 2(1 − δ)]. It can be verified
that the asymptotic spectral functions satisfy the iterative relation in (4.11)
with

f(u, δ)
.
= f(u, δ; Acc) =

=





−H(u) + (1− δ)H
(

u
2(1−δ)

)
+ δH

(
u
2δ

)

u ∈ Ωδ and δ ∈ [0, 1]

−∞ otherwise

(4.26)

and
r̂(0)(δ) = H(δ)/q. (4.27)

Proposition 4.10. The following facts are true

1. r̂(m)(δ) = r̂(m)(1− δ);

2. r̂(m)(δ) is increasing in δ∈ [0, 1/2] and r̂(m)
(
1
2

)
= R ln 2.

Proof. 1. From (4.27) we have that r̂(0)(δ) = r̂(0)(1 − δ). Consider now the
case m ≥ 1. From (4.11) we get that

r̂(m)(1− δ) = max
u∈[0,1]

{r̂(m−1)(u) + f(u, 1− δ)}

= max
u∈[0,1]

{r̂(m−1)(u) + f(u, δ)} = r̂(m)(δ)

where the second equality follows from the fact that f(u, δ) = f(u, 1 − δ),
∀u ∈ [0, 1] (see (4.26)).

2. From (4.27) we have that r̂(0)(δ) is strictly increasing in δ ∈ [0, 1/2].
Since

∂

∂δ
f(u, δ) = H

( u
2δ

)
−H

(
u

2(1− δ)

)

− u

2δ
ln

1− u
2δ

u
2δ

+
u

2(1− δ)
ln

(
1− u

2(1−δ)
u

2(1−δ)

)

= ln

(
1− u

2(1− δ)

)
− ln

(
1− u

2δ

)
≥ 0 (4.28)

∀δ ∈ [0, 1/2], u ∈ Ωδ,
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if 0 ≤ δ1 ≤ δ2 ≤ 1/2 then we have that

r̂(m)(δ1) = max
u∈[0,1]

{
r̂(m−1)(u) + f(u, δ1)

}

= max
u∈[0,2δ1]

{
r̂(m−1)(u) + f(u, δ1)

}

≤ max
u∈[0,2δ1]

{
r̂(m−1)(u) + f(u, δ2)

}

≤ max
u∈[0,2δ2]

{
r̂(m−1)(u) + f(u, δ2)

}
= r̂(m)(δ2).

Moreover, from (4.27) we have that r̂(0)(1/2) = R ln 2. The general case can
be proved by induction on m, using the fact that f(u, 1/2) = 0.

Lemma 4.8. r̂(1)(δ) is differentiable in δ.

Proof. By concavity of H(u) and by the fact that

∂2

∂u2
f(u, δ) =

1

1− u
− 1

2(2δ − u)
− 1

2 [2(1− δ)− u]

=
1

1− u
− 1− u

(2δ − u) [2(1− δ)− u]

=
1

1− u

[
1− (1− u)2

(2δ − u) [2(1− δ)− u]

]

=
1

1− u

[
(2δ − u) [2(1− δ)− u]− (1 − u)2

(2δ − u) [2(1− δ)− u]

]

=
1

1− u

[
4δ(1− δ)− 2u+ u2 − (1− u)2

(2δ − u) [2(1− δ)− u]

]

= − 1− 4δ(1− δ)

(1− u)(2δ − u) [2(1− δ)− u]
≤ 0,

∀δ, u ∈ Ωδ

and
∂2

∂u2
f(u, δ) = 0 ⇐⇒ δ = 1/2,

we conclude that, for fixed δ, G(1)(u, δ) is strictly concave in u ∈ Ωδ. As

∂

∂u
G(1)(u, δ)

∣∣∣
u=0

= +∞ ∂

∂u
G(1)(u, δ)

∣∣∣
u=2δ

= −∞,

we deduce that the maximizing value u(1) of the function G(1)(u, δ) is unique
and u(1) ∈ (0, 2δ ∧ 2− 2δ).

Define the function

u(1)(δ) = argmax
u∈Ωδ

G(1)(u, δ).
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If we differentiate G(1)(u, δ) with respect to u, we get that u(1)(δ) must satisfy
the following condition

∂

∂u
G(1)(u, δ) = −

(
1− 1

q

)
ln(1 − u)− 1

q
lnu+

+
1

2
ln(2 − 2δ − u) +

1

2
ln(2δ − u) = 0.

(4.29)

Rearranging and defining

F (u, δ) = (u2 − 2u+ 4δ(1− δ))q/2 − (1− u)q−1u

we have that F (u(1)(δ), δ) = 0.
It can be verified that F (0, 0) = 0, ∂

∂uF (u, δ) < 0 and F is C1, then the

theorem of implicit function guarantees that u
(1)
q (δ) is C1, ∀q ∈ N.

Theorem 4.12. There exists a constant K ∈ R such that

|r̂(m)(δ2)− r̂(m)(δ1)| ≤ K|δ2 − δ1| ∀δ1, δ2, ∀m.

In order to prove Lemma 4.12 we need to establish some intermediate results.
Lemma 4.9 allows us to get some information about the monotony of non-
smooth functions. The result is surely not original but we give the assertion,
as we don’t have any reference.

Lemma 4.9. Let y : R → R be a bounded Lipschitz function such that

lim sup
η→0

y(x+ η)− y(x)

η
≤ 0 (4.30)

for all x ∈ R. Then y(x) is a monotonically decreasing function.

Proof. Notice first that Rademacher’s theorem (see [76]) guarantees that y is
differentiable at almost every point in R. Let y′ : R → R be any bounded mea-
surable function coinciding with the derivative of y when this exists. Clearly
y′ ≤ 0 almost surely and it is also easy to see that y′ coincides with the distri-
butional derivative of y.

Let now {ψn}n∈N be a sequence of C∞ functions such that

supp(ψn) =

[
− 1

n
,
1

n

] ∫ ∞

−∞
ψn(x) dx = 1,

where supp(ψn) is the set of points where the function ψn is not zero. Clearly,
∫ ∞

−∞
ψn(x)y(x) dx

n→∞−→ y(0).

Fix a < b and consider now the sequence of functions {Jn(x)}n∈N defined
by

Jn(x) =

∫ x

−∞
[ψn(s− b)− ψn(s− a)] ds ∀x .
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We have that the functions Jn(x) are C∞, compactly supported and Jn(x) ≤ 0
for every n. We now have

0 ≤
∫ ∞

−∞
Jn(x)y

′(x) dx = −
∫ ∞

−∞
J ′
n(x)y(x) dx =

= −
∫ ∞

−∞
ψn(x− b)y(x) dx +

∫ ∞

−∞
ψn(x− a)y(x) dx

n→∞−→ −y(b) + y(a).

Hence, y(a) ≥ y(b). This proves the result.

For every δ, define the following set

Γ(m)(δ) = argmax
u∈Ωδ

{r̂(m−1)(u) + f(u, δ)} (4.31)

and choose u(m)(δ) ∈ Γ(m)(δ). Moreover we know that u(1)(δ) is unique.

Lemma 4.10. For any arbitrary ǫ ∈]0, 1/2], we have:

1. if u(m)(δ) ≤ 2δ(1 − δ) and r̂(m)(δ) is Lipschitz in δ ∈ [ǫ, 1/2], then
r̂(m)(δ) −H(δ) is decreasing in δ ∈ [ǫ, 1/2];

2. if r̂(m)(δ)−H(δ) decreases in δ ∈ [ǫ, 1/2], then u(m+1)(δ) ≤ 2δ(1−δ) and
r̂(m+1)(δ) is Lipschitz in δ ∈ [ǫ, 1/2];

Proof. 1. From the hypothesis we know that u(m)(δ) ≤ 2δ(1 − δ) and we can
write that for any arbitrary η > 0

r̂(m)(δ + η) = max
0≤u≤2(δ+η)(1−δ−η)

[r̂(m−1)(u) + f(u, δ + η)].

Using the fact that ∂2

∂δ2 f(u, δ) ≤ 0, and ∂2

∂δ∂uf(u, δ) ≥ 0 ∀δ ≤ 1/2, ∀u ∈ Ωδ, we
can estimate, for u ≤ 2(δ + η)(1 − δ − η),

f(u, δ + η) ≤ f(u, δ) + fδ(u, δ)η

≤ f(u, δ) + fδ(2(δ + η)(1 − δ − η), δ)η

Hence,

r̂(m)(δ + η) ≤ max
0≤u≤2(δ+η)(1−δ−η)

[r̂(m−1)(u) + f(u, δ)+

+ fδ(2(δ + η)(1 − δ − η), δ)η]

≤ r̂(m)(δ) + fδ(2(δ + η)(1 − δ − η), δ)η,

where the last inequality follows by the fact that u(m)(δ) ≤ 2δ(1 − δ). So we
have

r̂(m)(δ + η)− r̂(m)(δ)

η
≤ fδ(2(δ + η)(1 − δ − η), δ)
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and

lim sup
η→0

r̂(m)(δ + η)− r̂(m)(δ)

η
≤ fδ(2δ(1− δ), δ) = H ′(δ).

From Lemma 4.9 we conclude that r̂(m)(δ)−H(δ) decreases in δ ∈ [ǫ, 1/2].
2. We prove it by contradiction.
If we assume that, for some δ ∈ [ǫ, 1/2], it holds u(m+1)(δ) > 2δ(1−δ), then

r̂(m+1)(δ) = r̂(m)(u(m+1)(δ)) + f(u(m+1)(δ), δ) =

= r̂(m)(u(m+1)(δ))−H(u(m+1)(δ))+

+H(u(m+1)(δ)) + f(u(m+1)(δ), δ).

From the hypothesis it can be upper bounded as follows

r̂(m+1)(δ) < r̂(m)(2δ(1− δ))−H(2δ(1− δ))+

+H(2δ(1− δ)) + f(2δ(1− δ), δ) =

= r̂(m)(2δ(1− δ)) + f(2δ(1− δ), δ)

This is absurd by the definition of r̂(m+1).
We now prove the second part of 2). Let δ1 < δ2 ∈ [ǫ, 1/2]. We have

u(m+1)(δ2) ∈ [0, 2δ2(1− δ2)].

Since

∂

∂δ
f(u, δ) = ln

(
1− u

2(1− δ)

)
− ln

(
1− u

2δ

)

is continuous in δ ∈ [ǫ, 1/2] and u ∈ [0, 2δ(1− δ)], Weierstrass’s theorem guar-
antees that |∂f∂δ | attains its maximum K ∈ R over a closed bounded domain.
By applaying Lagrange’s theorem in the variable δ we have that ∃ ξ ∈ (δ1, δ2)
such that

|f(u, δ2)− f(u, δ1)| =
∣∣∣∣
∂f

∂δ
(u, ξ)(δ2 − δ1)

∣∣∣∣

=

∣∣∣∣
∂f

∂δ
(u, ξ)

∣∣∣∣ |δ2 − δ1| ≤ K|δ2 − δ1|

and we conclude that f(u, δ) is Lipschitz in δ ∈ [ǫ, 1/2] uniformly in u ∈
[0, 2δ(1− δ)].

It follows that

r̂(m+1)(δ2) = max
0≤u≤2δ2(1−δ2)

{r̂(m)(u) + f(u, δ2)}

≤ max
0≤u≤2δ1(1−δ1)

{r̂(m)(u) + f(u, δ1)}+K|δ2 − δ1|

= r̂(m+1)(δ1) +K|δ2 − δ1| .
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Similarly, we can estimate,

r̂(m+1)(δ2) ≥ r̂(m+1)(δ1)−K|δ2 − δ1|
We conclude that

|r̂(m+1)(δ2)− r̂(m+1)(δ1)| ≤ K|δ2 − δ1| ∀δ1, δ2 ∈ [ǫ, 1/2].

Notice that the constant K only depends on f and ǫ, and not on m.

Proof of Theorem 4.12: We first consider the case m = 1. Let

u(1)q (δ) = argmax
u∈Ωδ

[H(u)/q + f(u, δ)].

If we consider the case q = 2, we find the analytical expression

u
(1)
2 (δ) =

3−
√
9− 32δ(1− δ)

4
∀δ ∈ [0, 1/2],

by which u
(1)
2 (δ) ≤ 2δ(1− δ) and u

(1)
2 (δ) = 2δ(1− δ) ⇐⇒ δ = 0 or δ = 1/2.

We prove now that {u(1)q (δ)}q∈N is a decreasing sequence of functions in q.

Supposing ab absurdo that u
(1)
q (δ) < u

(1)
q+1(δ),

r̂
(1)
q (δ) =

H(u(1)
q (δ))

q + f(u
(1)
q (δ), δ)+

+
H(u(1)

q (δ))

q+1 − H(u(1)
q (δ))

q+1 ≤
≤ H(u(1)

q (δ))

q − H(u(1)
q (δ))

q+1 +

+f(u
(1)
q+1(δ), δ) +

H(u
(1)
q+1(δ))

q+1 ≤
≤ H(u

(1)
q+1(δ))

q − H(u
(1)
q+1(δ))

q+1

+f(u
(1)
q+1(δ), δ) +

H(u
(1)
q+1(δ))

q+1 =

= f(u
(1)
q+1(δ), δ) +

H(u
(1)
q+1(δ))

q

we get that u
(1)
q (δ) 6= argmax

u∈Ωδ

[r(1)(u) + f(u, δ)].

So we have u
(1)
q (δ) ≤ u

(1)
2 (δ) ≤ 2δ(1− δ), ∀q ∈ N.

Notice that r̂(1)(δ) is differentiable and u(1)(δ) ≤ 2δ(1 − δ). Applying,
inductively, Lemma 4.10 for some ǫ ∈ (0, ǫ2) we obtain that r̂(m)(δ) are all
Lipschitz in δ ∈ [ǫ, 1/2], ∀m. As r̂(m)(δ) is symmetric respect to axis δ = 1/2
and r̂(m)(δ) = 0 ∀δ ≤ ǫ, r̂(m)(δ) is Lipschitz in every point in [0, 1], ∀m.

Notice that the Lipschitz’s constant K is the same for every spectral func-
tion.

Proposition 4.11. The sequence of functions {r̂(m)(δ)}m≥1 is decreasing in
m.

See proof of property 1. of Theorem 4.10.
Define the sequence of points {ǫm}m≥1 such that

ǫm = max{ǫ ∈ [0, 1/2) : r̂(m)(δ) = 0 ∀ δ ≤ ǫ}. (4.32)
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4.8.2 Strict monotonicity of ǫm

From Theorem 4.5 it is trivial to see that {ǫm}m≥1 is increasing in m. It can
actually be shown that monotonicity is strict.

Lemma 4.11. Let δ < 1/2 and Γ(m)(δ) the set of points such that

Γ(m)(δ) = argmax
0≤u≤2δ

{r̂(m−1)(u) + f(u, δ)}. (4.33)

If ũ ∈ Γ(m)(δ) then ũ ≤ 1/2.

Proof. The statement is trivially proved if δ ≤ 1/4. Consider the case with
1/4 < δ < 1/2 and suppose at the contrary that ũ ∈ (1/2, 2δ]. As r̂(m−1)(u) =
r̂(m−1)(1− u) then there exists a point y ∈ [1/2− (2δ − 1/2), 1/2] such that

r̂(m−1)(ũ) = r̂(m−1)(y)

and by the fact that f(u, δ) is decreasing in u we get that

r̂(m−1)(ũ) + f(ũ, δ) < r̂(m−1)(y) + f(y, δ)

and therefore ũ /∈ Γ(m)(δ), which contradicts our assumption.

Proposition 4.12. Let {ǫm}m∈N be the sequence of points such that

ǫm = max{ǫ ∈ [0, 1/2) : r̂(m)(δ) = 0, ∀δ ≤ ǫ}.

The sequence is strictly increasing in m ∈ N.

Proof. From Proposition 4.11 follows that ǫm+1 ≥ ǫm. We now prove by induc-
tion on m that a strictly inequality holds.

As first step, choose m = 2. Consider

G(1)(u, δ) =
H(u)

q
+ f(u, δ), u ∈ [0, 1], δ ∈ [0, 1].

Differentiating the function G(1)(u, δ) with respect to the variable u, we get
that

d

du

(
H(u)

q

)
=

1

q
ln

1− u

u

u→0+−→ +∞.
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and

∂

∂u
f(u, δ) =

∂

∂u

(
−H(u) + (1 − δ)H

(
u

2(1− δ)

)

+ δH
( u
2δ

))

= − ln

(
1− u

u

)
+

1

2
ln

(
2(1− δ)− u

u

)

+
1

2
ln

(
2δ − u

u

)

= lnu− ln(1− u) +
1

2
ln(2(1− δ)− u)

− 1

2
lnu+

1

2
ln(2δ − u)− 1

2
lnu

= − ln(1− u) +
1

2
ln(2(1− δ)− u)

+
1

2
ln(2δ − u)

=
1

2
ln

(2(1− δ)− u)(2δ − u)

(1 − u)2

=
1

2
ln

4δ(1− δ)− 2u+ u2

(1 − u)2
(4.34)

from which we have

∂

∂u
f(u, δ)

∣∣∣
u=0

=
1

2
ln(2δ) +

1

2
ln[2(1− δ)]

=
1

2
ln (4δ(1− δ)) ≤ 0 ∀δ ∈ (0, 1).

As G(1)(0, δ) = 0 and there exists ǫδ such that

∂

∂u
G(1)(u, δ) > 0, ∀u ∈ (0, ǫδ)

then G(1)(u, δ) > 0, ∀δ and for u sufficiently small. From the recursive expres-
sion in (4.11) we conclude that

r̂(1)(δ) = max
0≤u≤1

{r̂(0)(u) + f(u, δ)}

= max
0≤u≤1

{G(1)(u, δ)} > 0, ∀δ ∈ (0, 1).

From Theorem 4.5 it is proved that ǫ2 > 0 = ǫ1.
For the inductive step, assume the statement is true for m, namely ǫm >

ǫm−1.
Let Γ(m+1)(δ) be the set of points defined in (4.33) and we prove prelim-

inarily that Γ(m+1)(ǫm) = {0}. From Lemma 4.11, we have that if u(m+1) ∈
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Γ(m+1)(ǫm) then u(m+1) < 1
2 ∧ 2ǫm. Suppose at the contrary that u(m+1) ∈

(ǫm−1, 1/2 ∧ 2ǫm] then

0 = r̂(m+1)(ǫm) = r̂(m)(u(m+1)) + f(u(m+1), ǫm) = 0

From Proposition 1 and from the inductive hypothesis we get

0 = r̂(m+1)(ǫm) < r̂(m−1)(u(m+1)) + f(u(m+1), ǫm)

≤ max
0≤u≤2ǫm

r̂(m−1)(u) + f(u, ǫm) = r̂(m)(ǫm)

then
ǫm 6= max{ǫ ∈ [0, 1/2) : r̂(m)(δ) = 0, ∀δ ≤ ǫ}.

which contradicts the definition of ǫm.
As r̂(m)(u) = 0, for every u ∈ [0, ǫm] and the function f(u, ǫm) is decreasing

in u ∈ [0, ǫm−1] then Γ(m+1)(ǫm) = {0}. We conclude that there exists η > 0
for which

r̂(m)(u) + f(u, ǫm) ≤ −η ∀u ∈ (ǫm−1, 2ǫm].

Using the fact that r̂(m) and f are both continuous and f(u, δ) is strictly
increasing in δ < 1/2, by the way ǫm has been defined (4.13), we get that there
exists ǫ′ > 0 such that

r̂(m)(u) + f(u, ǫm + ǫ′) ≤ 0 ∀u ∈ (ǫm−1, 2(ǫm + ǫ′)]

and the statement is proved also for m+ 1.

4.8.3 Analytical bounds

The next results provide, respectively, a lower bound and an upper bound on
the thresholds ǫm.

Proposition 4.13. If r̂(m−1)(δ) ≤ cδ with c ∈ R then r̂(m)(δ) = 0, ∀δ ≤
1
2 (1 −

√
1− e−2c).

Proof.

r̂(m)(δ) = max
u∈Ωδ

{r̂(m−1)(u) + f(u, δ)}

≤ max
u∈Ωδ

{cu+ f(u, δ)}

As ∂2

∂u2 f(u, δ) ≤ 0, ∀δ, u ∈ Ωδ then for any fixed δ the maximizing value ũ is
unique:

ũ(δ) = 1− 1− 2δ√
1− e−2c

∈ Ωδ ⇐⇒ δ ≤ 1

2
(1−

√
1− e−2c).

It can be easily verified that

cũ(δ) + f (ũ(δ), δ) ≤ 0 ∀δ ≤ 1

2
(1 −

√
1− e−2c).

The statement is proved, by using the fact that r̂(m)(δ) ≥ 0.
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Proposition 4.14.

r̂(1)(δ) ≤ 1

q
ln
[
1 +

(
2
√
δ(1− δ)

)q]

Proof. From the expression in (4.26) we have

f(u, δ) = −H(u) + (1− δ)H

(
u

2(1− δ)

)
+ δH

( u
2δ

)

= u lnu+ (1− u) ln(1 − u)

+ (1− δ)

[
− u

2(1− δ)
ln

(
u

2(1− δ)

)

−
(
1− u

2(1− δ)

)
ln

(
1− u

2(1− δ)

)]

+ δ
[
− u

2δ
ln
( u
2δ

)
−
(
1− u

2δ

)
ln
(
1− u

2δ

)]

= u lnu+ (1− u) ln(1 − u)− u

2
ln

(
u

2(1− δ)

)

− 2(1− δ)− u

2
ln

(
2(1− δ)− u

2(1− δ)

)

− u

2
ln
( u
2δ

)
− 2δ − u

2
ln

(
2δ − u

2δ

)

= u lnu+ (1− u) ln(1 − u)− u

2
lnu+

u

2
ln (2(1− δ))

− 2− 2δ − u

2
ln

(
2− 2δ − u

2(1− δ)

)
− u

2
lnu+

u

2
ln(2δ)

− 2δ − u

2
ln

(
2δ − u

2δ

)

= u ln
(
2
√
δ(1 − δ)

)
+ (1− u) ln(1− u) (4.35)

− 2δ − u

2
ln

(
2δ − u

2δ

)
− 2− 2δ − u

2
ln

(
2− 2δ − u

2− 2δ

)
.

Jensen’s inequality and the fact that g(u) = u lnu is strictly convex imply that

(1− u) ln(1− u) = g(1− u)

= g

(
2δ − u

2δ
δ +

2− 2δ − u

2(1− δ)
(1 − δ)

)

≤ δg

(
2δ − u

2δ

)
+ (1− δ)g

(
2− 2δ − u

2(1− δ)

)

=
2δ − u

2
ln

(
2δ − u

2δ

)

+
2− 2δ − u

2
ln

(
2− 2δ − u

2(1− δ)

)
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from which it follows that

f(u, δ) ≤ u ln
(
2
√
δ(1− δ)

)
(4.36)

and equality holds if and only if u = 0 or δ = 1/2.
By (4.36) we get that

r̂(1)(δ) = max
0≤u≤1

{r̂(0)(u) + f(u, δ)}

= max
0≤u≤1

{
H(u)

q
+ f(u, δ)

}

≤ max
0≤u≤1

{
H(u)

q
+ u ln

(
2
√
δ(1− δ)

)}

= max
0≤u≤1

{
H(u)

q
+
u

q
ln
(
2
√
δ(1− δ)

)q}
. (4.37)

Differentiating this expression with respect to the variable u

d

du

{
H(u)

q
+
u

q
ln
(
2
√
δ(1− δ)

)q}

=
1

q
ln

(
1− u

u

)
+

1

q
ln
(
2
√
δ(1 − δ)

)q
= 0

we get

1− u

u
=

1(
2
√
δ(1− δ)

)q

from which the optimizing value in the computation is

u =
1

1 + 1(
2
√
δ(1−δ)

)q

=

(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1 − δ)

)q .
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Substituting it in the right-hand side of (4.37) gives

r̂(1)(δ) ≤ 1

q
H




(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1− δ)

)q




+
1

q

(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1− δ)

)q ln
(
2
√
δ(1− δ)

)q

= −1

q

(
2
√
δ(1 − δ)

)q

1 +
(
2
√
δ(1− δ)

)q ln




(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1 − δ)

)q




− 1

q

1

1 +
(
2
√
δ(1− δ)

)q ln


 1

1 +
(
2
√
δ(1− δ)

)q




+
1

q

(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1− δ)

)q ln
(
2
√
δ(1− δ)

)q

=
1

q

(
2
√
δ(1− δ)

)q

1 +
(
2
√
δ(1 − δ)

)q ln
(
1 +

(
2
√
δ(1− δ)

)q)

+
1

q

ln
(
1 +

(
2
√
δ(1− δ)

)q)

1 +
(
2
√
δ(1− δ)

)q

=
1

q
ln
[
1 +

(
2
√
δ(1 − δ)

)q]

Corollary 4.5. r̂(m)(δ) = 0 ∀δ ≤ 1
2 (1 −

√
1− e−4),m ≥ 2.

Proof. Consider the case with m = 2 and q = 2. From Proposition (4.14) and
by the fact that {Rq(δ)}q∈N form a non-increasing sequence of functions in q,
we have that

r̂(1)(δ) ≤ R2(δ) =
1

2
ln [1 + 4δ(1− δ)] ≤ 2δ ∀δ.

From Proposition 4.13 we get that

r̂(2)(δ) = 0 ∀δ ≤ 1

2
(1 −

√
1− e−4).

The statement also holds for m > 2 from Proposition 4.11.
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4.9 Concluding remarks

In this chapter we have studied some properties of the spectral functions for
uniformly interleaved serially concatenated codes and their relation to the min-
imum distance growth rate. In particular we have shown that for m ≥ 2, the
asymptotic spectral functions exhibit some different features as compared to
the case where m = 1. The main difference is that for m ≥ 2 there exists a
positive point δm such that the function is zero below it and positive beyond it.
Moreover, by tracking the evolution of the asymptotic spectral functions, we
have shown that these functions converge uniformly, when m tends to infinity,
to that of random linear code ensemble for δ ∈ [δGV , 1− δGV ].

Although the floor of the spectral functions is zero, by combining the asymp-
totic spectral functions with the use of the union bound we have proved that
the mutilple-serial coding ensemble is asymptotically good, in the sense that
the typical minimum distance grows linearly in N with probability one. More-
over we have provided a numerical method to estimate with arbitrarily small
accuracy the linear growth rate: except for the case of dof = 2 and m = 2, we
have proved that the growth rate is at least δm. This implies that the normal-
ized minimum distance increases monotonically with m and meets the limit
implied by the Gilbert-Varshamov bound on the minimum distance when m
tends to infinity. Notice that the minimum distance ratios computed using this
method are quite close to the empirical growth rates listed in [44].

Theoretically, our mathematical tools provide a new general framework for
estimating the minimum distance distribution of multiple serially concatenated
codes.

This chapter leaves some open problems to study:

• How fast the sequence of the spectral functions converges to the limit
function?

• What is the effect of the inner encoders of the encoding scheme on this
convergence?

The results presented in this chapter are very encouraging and suggest that
even a few number of inner encoders are sufficient to approach the asymptotic
behavior. Since for Repeat mutiple-convolute codes the sequence of threshold
δm is strictly increasing, then this convergence should not be in finite time for
general cases.

Moreover the dynamical system we have defined depends exclusively on the
inner encoder and it would be different if we replace it with another convolu-
tional encoder. The numerical results and the fact that Theorem 4.7 hold for
any choice of the convolutional encoder (as long it was not the identity) lead
us to conjecture that the dynamical systems analysis is likely to hold true for
all convolutional encoders both recursive and not recursive.

Instead for the final part on the estimation of distances, the role of recur-
sivity must necessarily come up since, if it is not recursive can not certainly
exhibit linear growth of minimum distances. Indeed, it is easy to verify that
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for any nonrecursive rate-1 convolutional encoder with an impulse response of
weight d the output weight will be at most d times the input weight. If the
desired output weight is γN and the input weight is 1, then the minimum num-
bers of concatenations needed is logd γN . We conclude that, for fixed m and
asymptotically large N , the convolutional encoder never maps an input word
of weight 1 to an output word of weight γN and we expect that the ensemble
has low weight codewords.



92 Multiple serial turbo-coding ensemble

δ

r̂
(m

)

LCE

RA
m

0 0.2 0.4 0.6 0.8 1
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4.2: Asymptotic spectral functions for ensembles of RAm with m = 1, 2, 3
(from top to bottom) and comparison to that of random linear coding ensemble
(LCE).
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Figure 4.3: Asymptotic spectral functions corresponding to the ensembles of
CAm with m = 1, 2, 3 (from top to bottom) and outer convolutional encoder
G1(D) = [1, 1+D] (thick lines) and comparison to that of linear coding ensemble
(dashed line).
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Irregular Repeat-Convolute

codes 5
Brief—This chapter deals with a family of codes that generalize
Repeat-Convolute codes, and can be seen both as particular sys-
tematic serial turbo codes and as structured LDPC codes. Their
minimum distance distribution is studied. First, we prove that de-
terministically the minimum distance cannot grow linearly. Inspired
by the the tail estimations of [36], we identify parameters allowing
the typical minimum distance to grow sub-linearly in the codewords
length with high probability.

5.1 Introduction and outline of the chapter

In this chapter, we develop the study of Irregular Repeat-Convolute codes,
a family of codes which are a generalization of Repeat-Convolute codes, and
which can be seen both as serial turbo schemes and as structured Low Density
Parity Check (LDPC) codes.

We recall that one of the main problems of Low Density Parity Check
(LDPC) codes is their encoding complexity, which is generally quadratic in
the block length, as the generating matrix is not sparse. Constraining the
parity check matrix to have a particular structure can a priori guarantee easy
encoding. A successful construction uses matrices with a staircase part (i.e.
a sub-matrix with ones on the diagonal and on the lower diagonal, and zeros
everywhere else), so that the encoder can be seen as the serial concatenation
of a repetition code, an interleaver and an accumulator. They are known as
Repeat-Accumulate (RA) [23] codes or, if repetition is not uniform, Irregular
Repeat-Accumulate (IRA) codes [22].

There is a huge literature on the analysis and design of IRA codes (we refer
to [77] and references therein). In [78] the possibility to vary the structured
part of the parity matrix is investigated. This is equivalent to choosing an

97
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inner encoder different from the accumulator.
Theoretical results in [78] enlighten the effect of the choice of the inner

encoder on the performances under maximum-likelihood (ML) decoding as-
sumption.

Here, we focus on minimum distance distribution and we follow the ap-
proach to study these codes as a serial turbo structure. First, we prove that de-
terministically the minimum distance cannot grow linearly, using deterministic
upper bounding techniques devised in [37]. Inspired by the the tail estimations
of [36], we identify parameters allowing the typical minimum distance to grow
sub-linearly in the codewords length with high probability.

The remainder of the chapter is organized as follows. Section 5.2 is devoted
to the description of the coding scheme. Section 5.3 presents, in a formal way,
all the original contributions presented in this chapter. Sections 5.4, 5.5, 5.6
are technical sections whose results are proved in details. Finally, Section 5.7
containing concluding remarks completes the chapter.

5.2 Ensemble description

We consider the ensemble of Irregular-Repeat Convolute codes (IRC codes),
obtained by the serial concatenation of an irregular Low Density Generator
Matrix (LDGM) code with an arbitrary rate-1 convolutional encoder.

These codes are defined as follows.

• Let (u1, . . . , uN ) be a sequence of N information bits. These bits form
the systematic part of the codeword.

• To generate the parity part, repeat the i-th bit qi times, where (q1, . . . , qN )
is a sequence of integers such that qmin ≤ qi ≤ qmax.

• Order this sequence according to a permutation π. Then group this
sequence in M irregular blocks of size (s1, . . . , sM ) with smin ≤ si ≤ smax

and take the modulo-2 sum of every block. These give the check bits.

• Finally, the sequence emerging form the LDGM code is then encoded
using a rate-1 recursive convolutional encoder φin(D) ∈ Z2(D).

These coding schemes use all bits (systematic part and parity part) as its code-
word and we have rate R = N/(N +M).

LDGM code can be represented as a bipartite graph G = (I ∪ J , E) where
I = {1, . . . , N},J = {1, . . . ,M} and (i, j) ∈ E if the i-th information bit is
involved in the determination of the j-th parity bit. Figure 5.1 shows this
graphical representation.

It is convenient to introduce the following notation. Let Qi (respectively
Sj) be the fraction of information (check) bits that are connected to i check
(j information) bits. The following polynomials with non-negative coefficients
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Permutation π

Information bits/Variable nodes

Parity bits/Check nodes

Figure 5.1: Graphical representation of LDGM code

are used to specify the ensembles of IRC codes

Q(x) =

qmax∑

i=qmin

Qix
i S(x) =

smax∑

j=smin

Sjx
j .

We denote

qmin = ldeg[Q(x)] qmax = deg[Q(x)]

smin = ldeg[S(x)] smax = deg[S(x)].

Notice that the total number of edges between information and parity nodes
are equal to qN = sM where q =

∑
i iQi and s =

∑
j jSj .

We can interpret the overall coding scheme as the following map composi-
tion (see Fig. 5.2)

ψN : u 7→ (u, φinM ◦ SumS
M ◦ π ◦ RepQN (u))
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where

• RepQN : ZN2 → Z
qN
2 is the irregular repetition encoder

RepQN ([u1, . . . , uN ]) = (u1, . . . , u1︸ ︷︷ ︸
q1 times

, u2, . . . , u2︸ ︷︷ ︸
q2 times

, . . . , uN , . . . , uN︸ ︷︷ ︸
qN times

)

• π is a random permutation in the group of permutation on qN elements
SqN .

• the SumS
M : ZqN2 → ZM2 is the irregular summator

SumS
M ([x1, x2, . . . , xqN ]) =




s1∑

i=1

xi,

s1+s2∑

i=s1+1

xi, . . . ,

∑M
l=1 sl∑

i=
∑M−1

l=1 sl+1

xi




• φin(D) : Z2((D)) → Z2((D)) is a rate-1 scalar non-catastrophic and
recursive convolutional encoder, and φM : ZM2 → ZM2 is the block encoder
obtained by truncating the trellis at depth M .

We denote with CN = Im(ψN ) the associated code.

RepQN π SumS
qN/s φinqN/s

N qN qN qN/s qN/s

N

Figure 5.2: Coding scheme: Irregular-repeat convolute codes.

This scheme generalizes Repeat convolute encoders, which are the particular
case when smax = 1. The LDGM encoder φoutN = SumS

M◦π◦RepQN can be consid-
ered as the truncation of a proper convolutional encoder, which is not injective,
but the systematic branch guarantees injectivity and non-catastrophicity of the
overall coding scheme.

Irregular Repeat-Accumulate (IRA), introduced in [22], are obtained by fix-
ing the inner encoder to be the accumulator. The choice to have scalar inner
encoder (as in the previous chapter) does not affect our analysis.

These codes can be seen be seen also as LDPC codes: a parity check matrix

can be constructed in the following way. Notice that a pair (u,x) ∈ ZN2 ×Z
qN/s
2

belongs to CN if and only if

SumS
M ◦ π ◦ RepQN (u) + φ−1

M (x) = 0

and can be represented with parity check matrices of the type [HN ,KN ], where
HN is a sparse matrix with at most smax 1’s per row and qmax 1’s per column,
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while KN is a matrix depending on the inner encoder φin(D). Notice that also
KN is a low density matrix with a number of 1’s depending on the degree of
[φin(D)]−1. For example if φin(D) = 1

(1+D) we obtain the staircase LDPC codes:

KN has 1’s on the diagonal and on the lower diagonal, and zeros elsewhere:

KN =





















1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 0 1 1 0 0 . . .

0 0 0 1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . .





















If φ is the scalar encoder φ(D) = 1
1+D+D3 the block matrix KN is given by:

KN =





















1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

1 0 1 1 0 0 . . .

0 1 0 1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . .





















5.3 Main contribution

The behavior of the minimum distance for these type of codes is not yet com-
pletely understood. Regarding the case of IRA code ensembles (which is a
particular case of our setting) the results are not precise. By viewing some
similarity with LDPC codes, Di et al. assert that if qmin ≥ 3 for all but most a
fraction O(N−1) of codes in these ensembles minimum distances scale linearly
in the code length (see Theorem 23 in [42]).

In this chapter, by viewing IRA codes as serial turbo codes we prove the
contrary: deterministically (i.e. for any given permutation π) the minimum
distance cannot grow linearly. We can extend the proof also for generic inner
encoders with the additional assumption to have a regular summator.

Theorem 5.1. Suppose one of the following conditions are satisfied:

• φin(D) = (1 +D)−1

• S(x) = xs

then there exist constants C1, C2, N0 ∈ N such that for all N ≥ N0 the following
inequality is true

dmin(ψN ) ≤ C1N
β ln(N) + C2 lnN

with β = 1− 1/⌈qmin/2⌉.
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As a second step we derive the average weight enumerators of structured
LDPC codes, which are used to study minimum distance distribution. In par-
ticular, we get that minimum distance grows at least sub-linearly in N , with
probability approaching one as N goes to infinity. We formally have the fol-
lowing theorem.

Theorem 5.2. Let d = o(Nβ) for N → ∞ with β = 1 − 2/qmin. If qmin ≥ 3
then

P (dmin(ψN ) < d)
N→∞−→ 0.

5.4 Deterministic upper bound

We now prove that the ensemble of IRC codes has minimum distance growing

at most like O
(
N

1− 1
⌈qmin/2⌉

)
.

Before starting, we recall some notation and properties of recursive convo-
lutional encoders.

Definition 5.1. Let de be the effective free distance of the recursive convolu-
tional encoder φ(D), namely the minimum Hamming weight among its code-
words corresponding to input weight 2:

de(φ) := min{wH(φ(u)) = 2}

Our proof will make use of the following fact.

Lemma 5.1. Suppose one of the following conditions are satisfied:

• φin(D) = (1 +D)−1

• S(x) = xs.

There exists a constant ζ ∈ N such that

wH

(
φin
(
SumS

M

(
[. . . 010aζ−110 . . .]

)))
≤ ade(φ

in).

Proof. 1. If φin(D) = (1 + D)−1 we have de = 1 and wH(φ
in(1 + Da)) = a,

for every a ∈ N (see trellis transitions in Section 3.4). The assertion is proved
with ζ = 1. To see this fact, suppose a sequence of the form . . . 010a−110 . . . is
fed in the summator. We distinguish two cases:

• if the pair of 1’s falls in the same group of summation, then the output
weight is clearly zero

• if the two 1’s fall in different blocks then the sequence entering in the ac-
cumulate encoder is of the form . . . 010b−110 . . . with b ≤ a. We conclude
that the sequence emerging from the accumulate encoder has weight not
greater than a.
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2. As φin(D) is recursive with scalar input, there exists t ∈ N such that
wH(φ

in(1 +Dt)) (see Lemma 1 in [37]). Let t = min{t ∈ N : wH(φ(1 +Dt)) <
∞} then wH(φ

in(1 + Dt)) < ∞ if and only if t = jt, j ∈ N. Notice that

the inner encoder is also proper φin(D) = p(D)
q(D) with deg[p] < deg[q], then

wH(φ
in(1 +Djt)) = jwH(φ

in(1 +Dt)). To make sure that this is true, consider

(1 +Djt)
p(D)

q(D)
=

j−1∑

r=0

Drt(1 +Dt)
p(D)

q(D)
.

As deg[p] < deg[q], the error events Drt(1 +Dt)p(D)
q(D) have disjoint supports so

that wH

(∑j−1
r=0D

rt(1 +Dt)p(D)
q(D)

)
is the sum of the individual weights of the j

error events, which are all equal to wH

(
φin(1 +Dt)

)
= de.

If the summator is regular with grouping factor equal to s then the assertion
is proved with ζ = st. In particular, we have

wH

(
φin
(
SumS

M

(
[. . . 010aζ−110 . . .]

)))
=

= wH

(
φin
(
SumS

M

(
[. . . 010ast−110 . . .]

)))

= wH

(
φin
(
[. . . 010at−110 . . .]

))
= ade.

Definition 5.2. A hypergraph H is a pair H = (V , E) where V is a set of
elements, called nodes or vertices, and E is a set of non-empty subsets of V
called hyperedges or links. A q-uniform hypergraph is a hypergraph such that
all its hyperedges have size q.

Definition 5.3. The degree of a vertex in a hypergraph is the number of hy-
peredges that contain that vertex.

Lemma 5.2. [Lemma 3 in [37]] If H = (V , E) is q-partite, q-uniform with b
vertices in each part and 4b⌈q/2⌉ ≤ |E| then there exists a non-empty subset
S ⊂ E such that 1 ≤ |S| ≤ 2q ln b and every vertex has even degree in the
induced subgraph (V ,S).

Proof of Theorem 5.2. The key idea, first introduced in [37], consists in finding,
for any interleaver, a suitable subset of sequences, such that the corresponding
output has a small weight. We describe here the construction adapting the
procedure from [37] to our setting.

Let ζ be the number defined in Lemma 5.1 and Qmin = Qqmin be the fraction
of information nodes with repetition parameter qmin. To construct a suitable
input sequence, we first note that every bit of the input u corresponding to
information nodes with repetition parameter qmin appears exactly qmin times
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in the string π
(
RepQN (u)

)
. For every i ∈ {1, . . . , QminN} and every index

j ∈ {1, . . . , qmin} we set τj(i) with the position (after the permutation) of the
j-th copy of the i-th input bit and σj(i) = τj(i) mod ζ. Since there are at most

ζ
qmin

such possible sequences and QminN input bits, by the pigeonhole princi-

ple clearly there exists a set U ⊆ {1, . . . , QminN} of size at least |U| ≥
⌈
QminN

ζ
qmin

⌉

such that σ(i) = σ(j) for all i, j ∈ U .

From now on we take input bits with indices in U . The remark is that as all
the 1’s in these sequences are permuted to positions at a distance multiple of
ζ, when applying the map φinM ◦ SumS

M any pair of them gives bounded output
weight. We now construct a low weight codeword by setting some of positions
in U to 1.

Let

b ≤
⌊(

1

4

⌈
QminN

ζ
qmin

⌉)1/⌈qmin/2⌉
⌋

(5.1)

and split the set {1, . . . , qminN} into b consecutive intervals I1, . . . , Ib, each of
length ⌊qminN/b⌋ (except eventually the last interval with size ⌈qminN/b⌉).

We construct now an hypergraph H = (V , E) as follows: H is qmin-partite,
in the sense that it has qmin parts. V is the union of qmin disjoint copies of
W = {I1, . . . , Ib}. The set of hyperedges E has cardinality |U| and is qmin-
uniform, in the sense that E ∈ W qmin (each hyperedge contains exactly qmin

vertices, each from a different part). Every hyperedge e ∈ E corresponds to an
index i ∈ U and is of the form ei = (Ih1 , . . . , Ihqmin

) ∈ W qmin where hj is such
that τj(i) ∈ Ihj . By the way b has been chosen in (5.1), we have

4b⌈qmin/2⌉ ≤
⌈
QminN

ζ
qmin

⌉
≤ |U| = |E|

and from Lemma 5.2 there exists a subset S ⊂ E with 1 ≤ |S| ≤ 2qmin ln b such
that every vertex in the induced subhypergraph (V ,S) has even degree. Take

now the set Ũ ⊆ U corresponding to the hyperedges in S. Clearly we have
1 ≤ |Ũ | ≤ 2qmin ln b. Construct now the input sequence u as follows

ui =

{
1 if i ∈ Ũ
0 otherwise.

By construction π(RepQN (u)) has |Ũ |qmin/2 pairs of 1’s and each pair is in the
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same interval Ij and at distance which is a multiple of ζ. Then we have

wH(u, φ
in
M (SumS

M (π(RepQN (u)))))

= wH(u) + wH(φ
in
M (SumS

M (π(RepQN(u)))))

≤ |Ũ|+ |Ũ |qmin

2
de

⌈
qminN

b

⌉

≤ 2qmin ln b+ q2minde

⌈
qminN

b

⌉
ln b

≤ 4

qmin
lnN + 2de

⌈
qminN

b

⌉
lnN

≤ 4

qmin
lnN + 2de

(
qminN

b
+ 1

)
lnN

=

(
4

qmin
+ 2de

)
lnN + 2de

qminN

b
lnN

=

(
4

qmin
+ 2de

)
lnN + 2deqminN

((
QminN

4ζ
qmin

)1/⌈qmin/2⌉
− 1

)−1

lnN

=

(
4

qmin
+ 2de

)
lnN + 2deqminN

(
ζ
qmin

QminN

)1/⌈qmin/2⌉

×

×



(
1

4

)1/⌈qmin/2⌉
−
(

ζ
qmin

QminN

)1/⌈qmin/2⌉



−1

lnN

If N ≥ N0 = 8ζ
qmin

/Qmin we get

wH(u, φ
in
M (SumS

M (π(RepQN (u)))))

≤
(

4

qmin
+ 2de

)
lnN + 2deqminN

(
ζ
qmin

QminN

)1/⌈qmin/2⌉

8⌈qmin/2⌉ lnN

≤
(

4

qmin
+ 2de

)
lnN + 8deqmin(qmin + 1)N1−1/⌈qmin/2⌉

(
ζ
2
/Qmin

)
lnN

where the last inequality follows from qmin ≥ 2. We conclude there exist con-
stants C1, C2, N0 ∈ N such that for all N ≥ N0

dmin(ψN ) ≤ C1N
β ln(N) + C2 lnN

with β = 1− 1/⌈qmin/2⌉.

5.5 Weight enumerators

In this section we present exact formulæ of average weight enumerators for
IRC code ensembles and we present an analytical bound, which will be useful
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to analyze the minimum distance distribution.

5.5.1 Exact formulæ

The analysis of average weight enumerators is not affected if we assume a uni-
form interleaver between the inner and outer codes. This fact comes exclusively
from the randomness of the LDGM ensemble construction.

Remark 5.1. Consider the non-systematic branch of the coding scheme. The
map obtained by adding an extra interleaver between the summator and the
inner encoder

x = φM ◦ π2 ◦ SumS
M ◦ π1 ◦ RepQN (u) (5.2)

is equivalent to the original coding scheme (see Fig. 5.3).

RepQN π1 π2SumS
qN/s φinqN/s

N qN qN qN/s qN/s qN/s

Figure 5.3: Non-systematic branch: equivalent map composition.

In fact, rewriting (5.2) as follows

φ−1
M (x) = π2 ◦ SumS

M ◦ π1 ◦ RepQN (u),

it can be found a permutation π̃2 in the group SqN , such that π2 ◦ SumS
M =

SumS
M ◦ π̃2 and, consequently,

φ−1
M (x) = SumS

M ◦ π̃2 ◦ π1 ◦ RepQN (u).

The schemes considered are equivalent if the probability of the permutation π̃2 ◦
π1 = π is uniform over SqN . Notice that

P(π̃2 ◦ π1 = π) =
∑

σ∈SqN/s

P(π̃2 ◦ π1 = π|π2 = σ)P(π2 = σ)

=

(
qN

s

)−1 ∑

σ∈SqN/s

P(π̃2 ◦ π1 = π|π2 = σ)

=

(
qN

s

)−1 ∑

σ∈SqN/s

P(π1 = π̃−1
2 ◦ π|π2 = σ)

=

(
qN

s

)−1 ∑

σ∈SqN/s

P(π1 = σ̃−1 ◦ π)

=

(
qN

s

)−1(
qN

s

)
1

qN !
=

1

qN !
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where the last equality comes from the fact that π1 is uniformly distributed over
SqN and we conclude that these two map compositions are equivalent.

From Remark 5.1 we deduce the following proposition.

Proposition 5.1. The average weight enumerators of the ensemble are given
by

Aw,d(ψN ) =

qmaxw∑

h=0

Aw,h
(
φoutN

)
Ph,d−w(φ

in
qN/s)

where

Pi,j =
Ai,j(φ

in
qN/s)(

qN/s
i

) .

Proposition 5.2. The average weight enumerators of LDGM code ensemble
are given by

Aw,d(φ
out
N ) =

qmaxw∑

e=qminw

1(
qN
e

)coeff
{
∏

i

(1 + xiy)NQi , xeyw

}
×

× coeff




∏

j

[α0(x, j) + α1(x, j)z]
MSj , xezd





where α0(x; j) =
1
2

[
(1 + x)j + (1− x)j

]
and α1(x; j) =

1
2

[
(1 + x)j − (1− x)j

]
.

Proof. Consider the bipartite graph based ensemble, in which there are N
variables nodes and M check nodes. Denote by W and D the random variables
denoting the input output weight, of a randomly chosen codeword of a code
drawn randomly from the ensemble. Let E be the number of edges emanating
from variable nodes equal to 1. We have

Aw,d(φ
out
N ) =

(
N

w

)
P(D = d|W = w) =

(
N

w

) qN∑

e=0

P(E = e,D = d|W = w)

=

(
N

w

) qN∑

e=0

P(D = d|E = e,W = w)P(E = e|W = w). (5.3)

We get that

P(E = e|W = w) =
coeff

{∏qmax

i=qmin

(∑
i

(
QiN
wi

)
xiwiywi

)
, xeyw

}

(
N
w

)

=
coeff

{∏qmax

i=qmin
(1 + xiy)QiN , xeyw

}

(
N
w

)

and, given the number of edges emanating from variable nodes equal to 1, we
have to compute the probability that d parity nodes are connected to exactly an
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odd number of these edges and M − d to an even number of them. Notice that
α0(x; j) counts in how many way we can choose j edges such that each check
node has an even number of chosen sockets and, in analogous way, α1(x; j) is
the generating function counting in how many way we can choose j edges such
that each check node has an odd number of chosen edges. Therefore, we obtain

P(D = d|E = e,W = w) =
coeff

{∏smax

j=smin
[α0(x; j) + α1(x; j)z]

SjM , xezd
}

(
qN
e

)

where
(
qN
e

)
is the number of ways to dispose e 1’s in qN positions. We conclude

that

Aw,d(φ
out
N ) =

qmaxw∑

e=qminw

1(
qN
e

)coeff
{
∏

i

(1 + xiy)NQi , xeyw

}
×

× coeff




∏

j

[α0(x, j) + α1(x, j)z]
MSj , xezd



 .

In particular the weight spectrum is simplified if we consider a regular
LDGM.

Corollary 5.1. For (q, s)-regular LDGM code we have

Aw,d(φ
out
N ) =

(
N

w

)(
qN/s

d

)
coeff

{
α
qN/s−d
0 (x; s)αd1(x; s), x

qw
}(qN

qw

)−1

,

5.5.2 Analytical bounds

Now, we consider a useful bound on the weight enumerator of the LDGM code.
This bound is derived using bounding techniques devised in [39] to compute
the weight enumerators of LDPC codes.

Lemma 5.3.

Aw,d(φ
out
N ) ≤

qmaxw∑

e=qminw

1(
qN
e

)
(
N

w

)(
qN/s

d

)
sdmax

(
qN/s

(e− d)/2

)(
smax(e − d)/2

e − d

)1{(e−d)∈2N}

Proof. Consider the expression in (5.3). Since P(E = e|W = w) ≤ 1 we have

Aw,d(φ
out
N ) =

(
N

w

) qN∑

e=0

P(D = d|E = e,W = w)P(E = e|W = w)

≤
(
N

w

) qN∑

e=0

P(D = d|E = e,W = w)

=

(
N

w

) qN∑

e=0

coeff
{∏

j [α0(x, j) + α1(x, j)z]
MSj , xezd

}

(
qN
e

)
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Notice that ∀l the following inequalities hold

coeff
{
α1(x; j), x

l
}
= coeff





⌊j/2⌋∑

i=0

(
j

2i+ 1

)
x2i+1, xl



 = coeff



jx

⌊j/2⌋∑

i=0

1

j

(
j

2i+ 1

)
x2i, xl





≤ coeff



jx

⌊j/2⌋∑

i=0

(
j

2i

)
x2i, xl



 = coeff

{
smaxxα0(x; j), x

l
}

then we have

coeff




∏

j

[α0(x, j) + α1(x, j)z]
MSj , xezd



 =

≤ coeff




∏

j

[α0(x, j) + smaxxα0(x; j)z]
MSj , xezd





= coeff




∏

j

[α0(x, j)(1 + smaxxz)]
MSj , xezd





= coeff




∏

j

[α0(x, j)]
MSj (1 + smaxxz)

M
∑

j Sj , xezd





= coeff




∏

j

[α0(x, j)]
MSj , xe−d



 coeff

{
(1 + smaxxz)

qN/s, xdzd
}

= sdmax

(
qN/s

d

)
coeff




∏

j

[α0(x, j)]
MSj , xe−d





≤ sdmax

(
qN/s

d

)
coeff

{
[α0(x; smax)]

M
∑

j Sj , xe−d
}

= sdmax

(
qN/s

d

)
coeff

{
[α0(x; smax)]

qN/s, xe−d
}
.

It is clear that if e − d is odd, coeff
{
[α0(x; smax)]

qN/s, xe−d
}

is zero. To
estimate this coefficient when e− d is even, consider the following experiment.
Consider a binary matrix with r rows and qN/s columns. Each column cor-
responds to a copy of polynomial α0(x; smax). Set the element (i, j) in the
matrix to 1 if the i-th coefficient of the j-th polynomial is chosen. Notice that
the matrix has e− d 1’s and that each column contains an even number of 1’s.
Specifically, we have

coeff{α0(x; smax)
qN/s, xe−d} =

∑

k0,k2,...∈K

(
qN/s

k0, k2, . . .

) ∏

i even

(
smax

i

)ki
, (5.4)
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where

K = {(k0, k2, ...) ∈ N :
∑

i even

ki = qN/s,
∑

i even

iki = e− d}.

The mutinomial coefficient enumerates all possibilities of dividing the qN/s
columns into subsets of size l0, l2, . . . and the binomial coefficient

(
smax

i

)
corre-

sponds to choosing the i bits which are set to one in each column. So we are
looking for an upper bound on the expected weight distribution. Notice that
each of populated columns contains at least two 1’s. Since there are e − d 1’s
in the matrix, then there are at most (e − d)/2 populated columns. Then we
get

coeff{α0(x; smax)
qN/s, xe−d} ≤

(
qN/s

(e− d)/2

)(
smax(e − d)/2

e − d

)
, (5.5)

where
( qN/s
(e−d)/2

)
is the number of ways of choosing the populated columns and

(
smax(e−d)/2

e−d
)

the number of ways of arranging e−d 1’s only in those populated
columns. This completes the proof.

5.6 Minimum distance distribution

In this section, we state and prove our main results on the minimum distance
of the irregular repeat-convolute code. Our results indicates that, with high
probability, dmin scales as Nβ , where β = 1− 2/qmin

Lemma 5.4. If dqmax ≤ N , there exist constants C̃1, C̃2 (independent on d,N)
such that

P(dmin(ψN ) ≤ d) ≤
qmaxd∑

h=0

qmaxd∑

e=max{qmin,h}
ae,h

C̃h2
hh

d⌈h/2⌉

where

ae,h = C̃e1

( e
N

)⌈e/2⌉−e/qmin

e⌊h/2⌋

Proof. We start by estimating the minimum distance distribution with the
union bound:

P(dmin(ψN ) ≤ d) ≤
d∑

w=1

qmaxw∑

h=0

(
qN/s

h

)−1

Aw,h(φ
out
N )Ah,≤d−w(φ

in
qN/s).

Lemma 4.2 ensures that there exists a constant C (independent on h, d,N)
such that

P(dmin(ψN ) ≤ d) ≤
d∑

w=1

qmaxw∑

h=0

(
qN/s

h

)−1

Aw,h(φ
out
N )

Ch

hh
N ⌊h/2⌋d⌈h/2⌉
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Using Lemma 5.3, the usual bounds (a/b)b ≤
(
a
b

)
≤ (ae/b)b and noticing that

when e− h is even e−h
2 = ⌊e/2⌋ − ⌊h/2⌋ we get there exist C1, C2

(
qN/s

h

)−1

Aw,h(φ
out
N ) ≤

qmaxw∑

e=qminw

(
N

w

)
Ce1C

h
2N

−⌈e/2⌉−⌊h/2⌋e⌈e/2⌉+⌊h/2⌋1{(e−h)∈2N}.

Putting together these estimates and exchanging the order of summation we
have

P(dmin(ψN ) ≤ d) ≤

≤
d∑

w=1

qmaxw∑

e=qminw

e∑

h=0

(
N

w

)
Ce1 C̃

h
2N

−⌈e/2⌉e⌈e/2⌉+⌊h/2⌋ d
⌈h/2⌉

hh
1{(e−h)∈2N}

=

qmaxd∑

h=0

qmaxd∑

e=qminh

e/qmin∑

w=e/qmax

(
N

w

)
Ce1 C̃

h
2N

−⌈e/2⌉e⌈e/2⌉+⌊h/2⌋ d
⌈h/2⌉

hh
1{(e−h)∈2N}

≤
qmaxd∑

h=0

qmaxd∑

e=qminh

e/qmin∑

w=e/qmax

(
N

⌊e/qmin⌋

)
Ce1 C̃

h
2N

−⌈e/2⌉e⌈e/2⌉+⌊h/2⌋ d
⌈h/2⌉

hh
1{(e−h)∈2N}

≤
qmaxd∑

h=0

qmaxd∑

e=qminh

C̃e1 C̃
h
2N

−⌈e/2⌉+⌊e/qmin⌋e⌈e/2⌉+⌊h/2⌋−⌊e/qmin⌋ d
⌈h/2⌉

hh
1{(e−h)∈2N}

for some constants C̃1, C̃2. From hypothesis e ≤ qmaxd ≤ N and (e/N)−⌊e/qmin⌋ ≤
(e/N)−e/qmin

Lemma 5.5. If qmin ≥ 3 and d = o(N) for N → ∞, for any c ∈ (0, 1), there
exists N0 such that, for all N ≥ N0

ae+2,h ≤ cae,h

Proof. We prove the assertion by showing that when e = o(N) then the ratio
ae+2,h/ae,h → 0 when N → 0:

ae+2,h

ae,h
= C̃2

1

(
e+ 2

e

)⌈e/2⌉−e/qmin−⌊h/2⌋ (
e+ 2

N

)1−2/qmin

≤ C̃2
1

(
e+ 2

e

)e (
e+ 2

N

)1−2/qmin

≤ C̃2
1e

2

(
e+ 2

N

)1−2/qmin

.

If e = o(N) for N → ∞ then limN→∞
ae+2,h

ae,h
= 0.

Proof of Theorem 5.2. From Lemma 5.4 we get

P(dmin(ψN ) ≤ d) ≤
qmin−1∑

h=0

qmaxd∑

e=qmin

ae,h
C̃2

hh
d⌈h/2⌉ +

qmaxd∑

h=qmin

qmaxd∑

e=h

ae,h
C̃2

hh
d⌈h/2⌉
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and from Lemma 5.5 we obtain under the assumption d = o(N) that for any
c ∈ (0, 1) there exists N0 ∈ N such that ∀N ≥ N0

P(dmin(ψN ) ≤ d) ≤
qmin−1∑

h=0

+∞∑

l=0

cl(aqmin,h + aqmin+1,h)
C̃2

hh
d⌈h/2⌉

+

qmaxd∑

h=qmin

+∞∑

l=0

cl(ah,h + ah+1,h)
C̃2

hh
d⌈h/2⌉

=

qmin−1∑

h=0

(aqmin,h + aqmin+1,h)

1− c

C̃2

hh
d⌈h/2⌉

+

qmaxd∑

h=qmin

(ah,h + ah+1,h)

1− c

C̃2

hh
d⌈h/2⌉

For the first summation we have the following estimate:
qmin−1∑

h=0

(aqmin,h + aqmin+1,h)

1− c

C̃2

hh
d⌈h/2⌉

≤ 1

1− c

qmin−1∑

h=0

[
C̃qmin

1

(qmin

N

)⌈qmin/2⌉−1

q
⌊h/2⌋
min

+ Cqmin+1
1

(
qmin + 1

N

)⌈(qmin+1)/2⌉−1

(qmin + 1)⌊h/2⌋
]
C̃2

hh
d⌈h/2⌉

≤ C̃
(
N−⌈qmin/2⌉+1d⌈(qmin−1)/2⌉ +N

−⌈(qmin+1)/2⌉+1+ 1
qmin d⌈(qmin−1)/2⌉

)
.

Consider separately the upper bound for qmin even and odd

• if qmin is even
qmin−1∑

h=0

(aqmin,h + aqmin+1,h)

1− c

C̃2

hh
d⌈h/2⌉

≤ C̃
(
N−qmin/2+1dqmin/2 +N

−(qmin+2)/2+1+ 1
qmin dqmin/2

)

= C̃N−qmin/2+1dqmin/2
(
1 +N

−1+ 1
qmin

)
≤ 2C̃N−qmin/2+1dqmin/2

• if qmin is odd
qmin−1∑

h=0

(aqmin,h + aqmin+1,h)

1− c

C̃2

hh
d⌈h/2⌉

≤ C̃
(
N−(qmin+1)/2+1d(qmin−1)/2 +N

−(qmin+1)/2+1+ 1
qmin d(qmin−1)/2

)

= C̃N−(qmin+1)/2+1d(qmin+1)/2

(
1

N
+N

− 1
2+

1
qmin

)

≤ 2C̃N−(qmin+1)/2+1d(qmin+1)/2.



5.6. Minimum distance distribution 113

We conclude that the upper bound for the overall first summation is given by

qmin−1∑

h=0

(aqmin,h + aqmin+1,h)

1− c

C̃2

hh
d⌈h/2⌉ ≤ CN1−⌈qmin/2⌉d⌈qmin/2⌉. (5.6)

For the second summation, instead, we have

qmaxd∑

h=qmin

(ah,h + ah+1,h)

1− c

C̃2

hh
d⌈h/2⌉ ≤

≤ 1

1− c

qmaxd∑

h=qmin

(
C̃h1

(
h

N

)⌈ h
2 ⌉− h

qmin

h⌊
h
2 ⌋ C̃

h
2

hh
d⌈

h
2 ⌉+

+ C̃h+1
1

(
h+ 1

N

)⌈ h+1
2 ⌉− h+1

qmin

(h+ 1)⌊
h+1
2 ⌋ C̃

h
2

hh
d⌈

h
2 ⌉+

)

≤ 1

1− c

qmaxd∑

h=qmin

(
C
h

1N
h

qmin
−⌈h

2 ⌉
d⌈

h
2 ⌉ + C̃h1 (h+ 1)eN

h+1
qmin

−⌈ h+1
2 ⌉

C̃h2 d
⌈h

2 ⌉
)

≤ 1

1− c

qmaxd∑

h=qmin

(
C
h

1N
h

qmin
−⌈h

2 ⌉
d⌈

h
2 ⌉ + C

h

2N
h+1
qmin

−⌈h+1
2 ⌉

d⌈
h
2 ⌉
)

for some constants C1, C2.
We get for the second summation

qmaxd∑

h=qmin

(ah,h + ah+1,h)

1− c

C̃2

hh
d⌈h/2⌉ ≤

qmaxd∑

h=qmin

Chd⌈
h
2 ⌉
(
N

h
qmin

−⌈h
2 ⌉ +N

h+1
qmin

−⌈h+1
2 ⌉
)

=

qmaxd∑

h=qmin,h∈2N

Chd
h
2

(
N

h
qmin

−h
2 +N

h+1
qmin

−h+2
2

)

+

qmaxd∑

h=qmin,h/∈2N

Chd
h+1
2

(
N

h
qmin

−h+1
2 +N

h+1
qmin

−h+1
2

)

=

qmaxd∑

h=qmin,h∈2N

Chd
h
2N

h
qmin

−h
2

(
1 +N

1
qmin

−1
)

+

qmaxd∑

h=qmin,h/∈2N

Chd
h+1
2 N

gh
qmin

−h
2

(
N1/qmin− 1

2 +N− 1
2

)

≤ 2

qmaxd∑

h=qmin,h∈2N

(
Cd

1
2N

1
qmin

− 1
2

)h

+ d
1
2

(
N1/qmin− 1

2 +N− 1
2

) qmaxd∑

h=qmin,h/∈2N

(
Cd

1
2N

1
qmin

− 1
2

)h
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If d = o(N) , for sufficiently large N we have

d
1
2

(
N1/qmin− 1

2 +N− 1
2

)
≤ 2d

1
2N1/qmin− 1

2

We conclude that

P(dmin(ψN ) ≤ d) ≤ CN1−⌈qmin/2⌉d⌈qmin/2⌉ + 2

qmaxd∑

h=qmin,h∈2N

(
Cd

1
2N

− 1
2+

1
qmin

)h

+ 2

qmaxd∑

h=qmin,h/∈2N

(
Cd

1
2N

− 1
2+

1
qmin

)h+1

≤ CN1−⌈qmin/2⌉d⌈qmin/2⌉+

+ 2CN1− qmin
2 d

qmin
2

(
1 + d

1
2N

− 1
2+

1
qmin

) +∞∑

h=0

(
Cd

1
2N

− 1
2+

1
qmin

)h

Notice that if d = o(Nβ) then N
− 1

2+
1

qmin d
1
2 → 0 when N → ∞, the above

series is convergent and P(dmin(ψN ) ≤ d) is asymptotically vanishing.

5.7 Concluding remarks

This chapter has analyzed the behavior of the minimum distance of a family of
linear-time encodable LDPC codes. The design parameter, provided through
this analysis, for the constituents encoders of the scheme are perfectly matching
with the ones suggested by the analysis of the average error probability [19,78].

Further investigations will be devoted to the case of multiple inner encoders.
The minimum distance analysis is a straightforward generalization of results
in Chapter 4, while the convergence to the Gilbert-Varshamov distance looks
a hard task.



Conclusions 6
In this thesis, we developed a theoretical analysis of turbo-like coding ensem-
bles, where convolutional encoders are concatenated through permutations.

First, we focused on truncated convolutional encoders. We derived exact
formulæ of the weight enumerators and showed how asymptotic estimates of
powers of multivariate functions with nonnegative coefficients can be used to
study their growth rate in the code length. Then, we obtained an explicit
expression of the asymptotic spectral function and proved its continuity and
concavity.

Building upon these results, we analyzed average spectra and minimum
distance of multiple concatenated coding schemes. We identified sufficient con-
ditions allowing minimum distances to scale linearly in the code length with
high probability, and we obtained lower bounds for their typical normalized
minimum distance. The design parameter for the constituents encoders of the
scheme, provided through this analysis, perfectly match with the ones sug-
gested by the analysis of the average error probability [19] and observed from
simulations [44].

Moreover, we derived a very mild condition on the outer encoder, which
guarantees the convergence of the minimum distance to the GV-distance when
the number of interconnections goes to infinity. The question whether this as-
sumption can be removed is still an open problem. Another open problem is
to find mathematical tools to estimate how fast the typical minimum distances
converge to the GV-limit.

We also considered another binary ensemble fitting in the general scheme
discussed above. It is a generalization of Repeat-Convolute codes, and it can
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be interpreted as a family of structured linear-time encodable and decodable
LDPC codes, generalizing staircase LDPC codes. The inner encoder is itself
the composition of two maps, and in order to find a design criterion we pre-
sented the minimum distance analysis. We showed that minimum distances
can grow at most sub-linearly in the code length and that this happens with
probability close to one.

Some of the main problems left for future research are:

• proving concentration results for the spectra of turbo-like code ensembles
using a second order method;

• analyzing the weight spectrum of turbo-stopping-sets, a measure of the
performance of a binary turbo decoder on the BEC introduced for turbo-
like codes in [73].

The mathematical tools used in this thesis should help addressing these
issues.



Multidimensional saddle-point

method for large powers A
We prove now Theorem 3.4 through intermediate steps. Our proof is based on
multidimensional saddle-point (MSP) techniques to estimate order of magni-
tude of coefficients in large powers of multivariate functions.

We can summarize the MSP-method as follows. The first step is to recast
the problem as computation of a Cauchy integral and to apply the residue
theorem. In order to estimate complex integrals of an analytic function, it is
often a good strategy to choose a path crossing a saddle-point and estimate the
integrand locally near this saddle-point (i.e. where the modulus of the integrand
achieves its maximum on the contour). If the generating function satisfies some
“nice” properties, which go under the name of localization or concentration, the
contribution near the saddle-point captures the essential part of the integral.
Some examples of admissible functions are multivariate polynomial (see Lemma
D.14 in [21]) and univariate series (see Section VIII.8.1 in [62]). Applications of
multidimensional saddle point method in the context of coding theory can be
found in [21, 42, 43] to study weight/stopping set distribution of LDPC codes.

Theorem 3.4 can be thought as an extension of Theorem 2 in [52]:

• The generating function is given by the product of two kinds of functions
(S(x) and a large power of F (x)).

• It involves multivariate series with non-negative coefficients, for which
the “localization property”, cited above, has never been proved.

• Theorem 3.4 estimates the order of magnitude of a (convergent) sequence
of coefficients in large powers of multivariate functions.
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A.1 Concentration property for multivariate series

In the sequel we will consider multivariable formal power series of type

F (x) =
∑

k∈N
η
0

Fkx
k

where x = (x1, . . . , xη), and xk =
∏η
i=1 x

ki
i and we recall the notation:

F := {k ∈ N
η
0 |Fk > 0} .

Throughout this section we will assume that F (x) possesses the following prop-
erties:

(P1) Fk ∈ N0 for every k, and F0 > 0.

(P2) There exists C ∈ R+ and s ∈ N such that Fk ≤ C|k|s for every k.

(P3) There exists a finite subset F0 ⊆ F and k1, . . .kl ∈ N
η
0 such that:

(P3a) F ⊆ {k0 +
∑l
i=1 tik

i | k0 ∈ F0, ti ∈ N}.
(P3b) There exist k̃i ∈ F for i = 1, . . . , l such that k̃i+ tki ∈ F for every

t ∈ N0.

(P4) F generates Zµ as an Abelian group.

From (P1), (P2) and (P3) it follows that the region of absolute convergence
Σ ⊆ Rη of F (x) is given by the open set:

Σ =

{
x ∈ Rη

∣∣∣∣
∣∣∣xki

∣∣∣ < 1 ∀i = 1, . . . , l

}
(A.1)

The sum of the series on Σ will be denoted by the same symbol F (x) :=∑
k∈N

η
0

Fkx
k. Put Σ+ := Σ ∩ (R+)η.

Lemma A.1. Let x ∈ ∂Σ+ with xi > 0 for every i = 1, . . . , η. Let xn ∈ Σ+

be a sequence such that xn → x for n→ +∞. Then,

F (x) = lim
n→+∞

F (xn) = +∞ .

Proof. (P1) and Fatou’s lemma [79] yield:

lim inf
n→+∞

F (xn) ≥ F (x) ,

hence, to prove the result, it is sufficient to show that F (x) = +∞ (notice
that the expression F (x) is meaningful because it is the summation of a non-
negative series). Suppose, by contradiction, that instead F (x) < +∞. Then,
using (P3b) and (P1), for every i = 1, . . . , l we obtain

+∞ > F (x) =
∑

k∈N
η
0

Fkx
k ≥

+∞∑

t=0

F
k̃i+tki

xk̃i
(
xki
)t ≥

+∞∑

t=0

xk̃i
(
xki
)t
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This yields xki < 1 for every i = 1, . . . , l. From (A.1) it follows that x is an
interior point of Σ+ contrarily to what was assumed.

Lemma A.2. For every ω ∈
◦

co(F ), there exists a unique x ∈
◦
Σ+ such that

∆[F ](x) = ω, (A.2)

where ∆[F ] is defined in (3.21).

Proof. Notice first of all that points solving (A.2) are the stationary point in
◦
Σ+ of F̂ω(x) = ln (F (x)/xω).

UNIQUENESS: Consider the function fω(ξ) = F̂ω(e
ξ1 , eξ2 , . . . , eξη ). It is

strictly convex on the set Ξ = {ξ|(ξ1, . . . , ξη) = (ln x1, . . . , lnxη),x ∈ Σ+} ⊆
Rη. Indeed,

vT∇2f(ξ)v =

η∑

i=1

η∑

j=1

vi
∂2f

∂ξj∂ξi
vj

=

η∑

i=1

η∑

j=1

vi

(
∑

k

Fke
(k−ω)·ξ(ki − ωi)(kj − ωj)

)
vj

=
∑

k

Fke
(k−ω)·ξ

η∑

i=1

η∑

j=1

vi(ki − ωi)(kj − ωj)vj

=
∑

k

Fke
(k−ω)·ξ||(v · (k − ω))|| ≥ 0

Since ω ∈
◦

co(F ) then vT∇2f(ξ)v = 0 ⇐⇒ v = 0. This implies that f(ξ) is
strictly convex in ξ ∈ Ξ. Uniqueness of the solution of (A.2) hence follows.

EXISTENCE: We now show that for any sequence xn either converging to
a point of ∂Σ+ or unbounded, it holds that F̂ω(xn) is superiorly unbounded.

This will imply that F̂ω attains global minimum in
◦
Σ+ and will complete the

proof.
Consider first the case when xn → x ∈ ∂Σ+ with xi > 0 for all i. In this

case the result easily follows from Lemma A.1. If, instead, there exists i such
that xi = 0, then,

F (xn)

xω
n

≥ F0

xω
n

→ +∞ (n→ +∞) (A.3)

It remains to consider the case when at least one component of xn diverges

to +∞. Since ω ∈
◦

co(F ), we can find f1, . . .fµ ∈ F \ {0} generating Rµ

and strictly positive constants γ1, . . . , γs such that
∑
γj < 1 and ω =

∑
γjf

j .

Passing possibly to subsequences, we can always assume that xf l

n → αl ∈
[0,+∞] for all l ∈ {1, . . . , µ}. If αl ∈]0,+∞[ for all l, then this would easily
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imply that xn is bounded. If αl ∈ [0,+∞[ for all l and at least one of them is

0, then, since xω
n =

∏
l[x

f l

n ]γl , we would have xω
n → 0 and we could argue as

in (A.3). Consider finally the case when at least one αl = +∞.
We can write as follows:

F (xn)

xω
n

=
F (xn)
∏
l[x

f l

n ]γl

where γ =
∑
γl < 1. Let now zl = xf l

n > 0 for l = 1, . . . , µ. Then,

∏

l

zγ
l

l ≤
∑

l

zγl . (A.4)

To see this fact let

Γ(z) =

∏

j

zγ
j

j

∑
j z

γ
j

.

It satisfies Γ(λz) = Γ(z) for every z and λ > 0. Let us restrict it to the z such
that

∑
j z

γ
j = 1. Necessarily, zj ≤ 1 for all j and this yields

Γ(z) =
∏

j

zγ
j

j ≤ 1

This proves the inequality.
Using (A.4) we have

F (xn)

xω
n

=
F (xn)
∏
l[x

f l

n ]γl
≥

∑
j x

fj

n
∑

j [x
fj

n ]γ

where γ =
∑
γj < 1. The expression on the left is clearly superiorly unbounded

for n→ +∞ and this completes the result.

Lemma A.3. The matrix Γ[F ](x) (defined in (3.22)) is symmetric and definite
positive ∀x ∈ Σ+.

Proof. In the sequel we put Γ = Γ[F ].

F (x)2vTΓ(x)v = F (x)2
η∑

i=1

η∑

j=1

viΓij(x)vj

= F (x)2
η∑

i=1

v2i Γii(x) + F (x)2
η∑

i=1

η∑

j 6=i
viΓij(x)vj
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F (x)2vTΓ(x)v =

η∑

i=1

v2i

[
∑

k

∑

l

(
k2i − kili

)
FkFlx

k+l

]
+

+

η∑

i=1

η∑

j 6=i
vivj

[
∑

k

∑

l

(kikj − kilj)FkFlx
k+l

]

=
∑

k

∑

l

FkFlx
k+l




η∑

i=1

v2i
(
k2i − kili

)
+

η∑

i=1

η∑

j 6=i
vivj (kikj − kilj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

v2i (ki − li)
2
+

η∑

i=1

v2i li (ki − li)+

+

η∑

i=1

η∑

j 6=i
vivj (kikj − kilj − kj li + lilj) +

η∑

i=1

η∑

j 6=i
vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

v2i (ki − li)
2
+

η∑

i=1

v2i li (ki − li)+

+

η∑

i=1

η∑

j 6=i
vivj (ki − li) (kj − lj) +

η∑

i=1

η∑

j 6=i
vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2
+

+
∑

k

∑

l

FkFlx
k+l




η∑

i=1

vili


vi(ki − li) +

η∑

j 6=i
vj (kj − lj)




 ,

from which

F (x)2vTΓ(x)v =
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2

+
∑

k

∑

l

FkFlx
k+l




η∑

i=1

η∑

j=1

vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2
≥ 0 ∀x ∈ Σ+

Clearly, vTΓ(x)v = 0 if and only if v = 0. This yields the result.

Lemma A.4. For each r ∈ (R+)η, there exists a strictly positive constant
χ = χ(F, r) such that ∀θ ∈ [−π, π)η \

[
−n−2/5, n−2/5

]
it holds the following

inequality ∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

n

≤ χn−1/5. (A.5)
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Proof. We have that

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

=

(∑
k Fkr

kejk
T θ
)(∑

l Flr
le−jlT θ

)

|F (r)|2 =

∑
k,l FkFlr

k+lej(k−l)T θ

|F (r)|2

= 1−
∑

k 6=l FkFlr
k+l

[
1− cos

(
(k − l)Tθ

)]

|F (r)|2

and, by choosing k̃, l̃ ∈ F , we get

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

≤ 1−
F
k̃
F
l̃
rk̃+l̃

[
1− cos

(
(k̃ − l̃)Tθ

)]

|F (r)|2

≤
1− F

k̃
F
l̃
rk̃+l̃

[
1
2 |(k̃ − l̃)Tθ|2 − 1

6 |(k̃ − l̃)Tθ|3
]

|F (r)|2 .

If we assume θ ∈ (−ε, ε)η with ε ≤ 3/(2||k̃− l̃||1) and r ∈ (R+)η, then from
last inequality we get that there exists a constant χ = χ(F, r) ∈ R+ only
depending on F and r such that

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

≤ 1− χ||θ||22. (A.6)

Since 〈F 〉 = Zη, standard results on Fourier analysis [80] show that

〈F 〉 · θ = 0 (mod 2π) ⇐⇒ θ = 0 (mod 2π).

Since F (r) > 0 ∀r ∈ (R+)η and by the fact that the region [−π, π]η \ (−ε, ε)η
is compact and by continuity argument we have that there exists a constant
τ ∈ R+ such that

∑
k 6=l FkFlr

k+l
[
1− cos

(
(k − l)Tθ

)]

F (r)
> τ.

This proves that the inequality (A.6) is true also for θ ∈ [−π, π)η \ (−ε, ε)η.
It follows from inequality (A.6) that ∀θ ∈ [−π, π)η \ [−n−2/5, n−2/5]

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

n

≤
(
1− χ||θ||22

)n/2 ≤ e−χn
1/5 ≤ χn−1/5.

A.2 Proof of Theorem 3.4

In this subsection we split the proof of Theorem 3.4 into two parts. The first
considers the case with 〈F 〉 = Zη. Otherwise, if 〈F 〉 = Zν ⊂ Zη, the sad-
dle point approximation cannot be applied directly to the generating function.
However, in the second part of the proof we show that we can reformulate
the problem in such a way the conditions, required to apply the saddle point
method, are satisfied.
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Proof of Theorem 3.4

Proof of Theorem 3.4 with 〈F 〉 = Zη. From Lemma A.2 we know that there
exists a unique solution x̃ ∈ Σ+ = (R+)η ∩ Σ to ∆(x) = ω, where ∆ = ∆[F ]
is defined in (3.21). By the residue theorem and by choosing the integration
surface to be a sphere of radius x̃ we have

coeff {S(x)[F (x)]αnn,ωnαnn}

=
1

(2π)η

∫

[−π,π]η
S
(
x̃ejθ

) F
(
x̃ejθ

)αnn

x̃
αnnωnejαnnθTωn

dθ

=
1

(2π)η
S(x̃)

F (x̃)
αnn

x̃
αnnω

∫

[−π,π]η

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ.

By splitting the integration region [−π, π]η into Θ =
[
−(αnn)

−2/5, (αnn)
−2/5

]η
and its complement [−π, π]η \Θ:

coeff {S(x)[F (x)]αnn,ωnαnn}

= S(x)
F (x̃)

αnn

x̃
αnnωn

[
1

(2π)η

∫

[−π,π]η\Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)αnn e−jnαnθ
Tωndθ

+
1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ

]
.

From Lemma A.4 there exists a constant χ such that
∣∣F
(
x̃ejθ

)
/F (x̃)

∣∣ ≤
χn−1/5 and from inequality (A.6) we have also

∣∣S
(
x̃ejθ

)
/S (x̃)

∣∣ < 1. It fol-
lows that

∣∣∣∣∣
1

(2π)η

∫

[−π,π]η\Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ

∣∣∣∣∣

≤ 1

(2π)η

∫

[−π,π]η\Θ

∣∣∣∣∣
S
(
x̃ejθ

)

S (x̃)

∣∣∣∣∣

∣∣∣∣∣
F
(
x̃ejθ

)

F (x̃)

∣∣∣∣∣

αnn

dθ = O
(
n−1/5

)
,

and the contribution to the integral from the region [−π, π]η \Θ is negligible.
On the other hand, by expanding the function ln

(
F
(
x̃ejθ

)
/F (x̃)

)
up to

second order terms we have

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ =

=
1

(2π)η

∫

Θ

ejθ
T
∆[S](x̃)− 1

2θ
T
Γ[S](x̃)θ+O(||θ||3)+jαnnθ

T
∆[F ](x̃)−αnn

2 θT
Γ[F ](x̃)θ+αnnO(||θ||3)×

× e−jαnnθ
Tωndθ

=
1

(2π)η

∫

Θ

ejθ
T
∆[S](x̃)− 1

2θ
T
Γ[S](x̃)θ+O(||θ||3)−αnn

2 θT
Γ[F ](x̃)θ+αnnO(||θ||3)×

× e−jαnnθ
T (ωn−ω)dθ
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where the last equality follows from ∆[F ](x̃) = ω.
Notice that αnn||θ||3 = O(n−1/5) if θ ∈ Θ = [−(αn)

−2/5, (αn)
−2/5]. Since

Γ[S](x̃) is symmetric definite positive (see Lemma A.3) then there exist P,Λ
such that Γ[S] = PTΛP where Λ is a diagonal matrix with positive entries
{λi}ηi=1 and

1

2
θTΓ[S](x̃)θ =

1

2
θTPTΛPθ =

1

2

∑

i

λi||(Pθ)i||22 = O(n−4/5) = O(n−1/5).

We get

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)αnn e−jαnnθ
Tωndθ =

=
1

(2π)η

∫

Θ

e−
αnn

2 θT
Γ[F ](x̃)θ+O(n−1/5)−j[αnnθ

T (ωn−ω)−θT
∆[S](x̃)]dθ

=
1

(2π)η

∫

Θ

e−
αnn

2 θT
Γ[F ](x̃)θ−j[αnnθ

T (ωn−ω)−θT
∆[S](x̃)]

(
1 +O

(
n−1/5

))
dθ.

By defining σ =
√
αnnθ and Σ =

[
−(αnn)

1/10, (αnn)
1/10

]η
we get that

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ =

= (αnn)
−η/2

(
1 +O

(
n−1/5

))

(2π)η

∫

Σ

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

∫

Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[∫

Rη

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

−
∫

Rη\Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

]

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
e−

1
2αnn(ωn−ω)TΓ

−1(x̃)(ωn−ω)

−
∫

Rη\Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

]
.

Since Γ[F ](x̃) is symmetric definite positive (see Lemma A.3) then there
exist Q,D such that Γ = QTDQ where D is a diagonal matrix with positive
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entries {Di}ηi=1 and Dmin = miniDi. Then, by defining y = Qσ, we have

∣∣∣∣∣

∫

Rη\[−(αnn)1/10,(αnn)1/10]
η
e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

∣∣∣∣∣

≤
∫

||y||2≥(αnn)1/10
e−

1
2Dmin||y||2dy = O

(
e−(αnn)

1/5

(αnn)1/10

)
= O(n−1/10).

We get that

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnωnθ

T

dθ

≤
(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
e−

1
2αnnD

−1
min||ωn−ω||2 +O(n−1/10)

]

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
eO(

1
n ) +O(n−1/10)

]

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
1 +O(n−1/10)

]

and we conclude that for n→ ∞

coeff {S(x)[F (x)]αnn,ωnαnn} =
S(x̃)√

(2παnn)η|Γ[F ](x̃)|
F (x̃)αnn

x̃
ωnαnn (1 + o(1))

and

lim
n∈N

1

n
ln (coeff{S(x̃)[F (x)]αnn,xωnαnn}) = α lnF (x̃)− α ω · ln x̃

Notice that o(1) is independent on ωn and the convergence in (3.23) is uniform

in ω ∈
◦

co(F ).

Proof of Theorem 3.4 with 〈F 〉 ⊂ Zη. If 〈F 〉 ⊂ Zη then the saddle point ap-
proximation cannot be applied directly to the function B(x) = S(x)[F (x)]αnn.

Since submodules of free modules over a Noetherian ring are free [81], there
exists a basis B = {b1, . . . , bν} with |B| = ν ≤ η of 〈F 〉 and every element in
F can be expressed in a unique way as a finite sum of elements in B multiplied
by coefficients in Z:

k =
∑

b∈B
γb(k)b, k ∈ F .

From hypothesis also elements in S = {l|Sl > 0} can be written as combina-
tion of basis elements:

l =
∑

b∈B
γb(l)b, l ∈ S .
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Define wb = xb, ∀b ∈ B, set Gγ(k) = Fk, Tγ(l) = Sl and let G = {γ ∈ Zν :
Gγ > 0}.

Then we have

F (x) =
∑

k∈F

Fkx
k =

∑

γ∈G

Gγx
∑

b∈B γbb =
∑

γ∈G

Gγ

∏

b∈B
xγbb

=
∑

γ∈G

Gγ

∏

b∈B

(
xb
)γb

=
∑

γ∈G

Gγw
γ = G(w).

and for the same reason S(x) = T (w).
If k ∈ B then there exists q ∈ S such that k =

∑
l∈F

all+ q with
∑

l∈F
al = αnn

and, equivalently,

k =
∑

l∈F

al
∑

b∈B
γb(l)b+

∑

b∈B
γb(q)b =

∑

b∈B

∑

l∈F

al[γb(l) + γb(q)]b

with
∑

l∈F
al = αnn. Let

ξn,b = (αnn)
−1
∑

l∈F

al[γb(l) + γb(q)],

then

coeff {S(x)[F (x)]αnn,xωnαnn} = coeff
{
T (w)[G(w)]αnn,wξnαnn

}
.

If ωn → ω when n→ ∞ then ξn is a convergent sequence to ξ where ξ satisfies∑
b∈B ξbb = ω.

It is trivial to see that if ω ∈
◦

co(F ) then ξ ∈
◦

co(G ). We conclude by Lemma
A.2 that there exists a solution w̃ ∈ (R+)ν of ∆[G](w) = ξ.

Moreover we have that since ||ωn − ω|| = O( 1
n ) then ||ξn − ξ|| = O( 1

n ).
Since 〈G 〉 = Zν , we can apply multidimensional saddle point method:

coeff
{
T (w)[G(w)]αnn,wξnαnn

}
=

T (w̃)√
(2παnn)ν |Γ[G](w̃)|

[G(w̃)]αnn

w̃
ξnαnn

(1+o(1)) n→ ∞.

and

lim
n→∞

1

n
ln coeff

{
T (w)[G(w)]αnn,wξnαnn

}
= α lnG(w̃)− α ξ · ln w̃. (A.7)

Since w̃ is solution of ∆[G](w) = ξ, we get

ν∑

i=1

∆i[G](w̃)b(i) =
ν∑

i=1

w̃i
G(w̃)

∂G

∂wi

∣∣∣∣
w̃

b(i) = ω

from which we get that ∀j = 1, . . . , η

ν∑

i=1

w̃i
G(w̃)

∂G

∂wi

∣∣∣∣
w̃

b
(i)
j =

xj
F (x)

ν∑

i=1

∂G

∂wi

xb(i)

b
(i)
j

xj
=

xj
F (x)

ν∑

i=1

∂G

∂wi

∂wi
∂xj

=
xj
F (x)

∂F

∂xj
= ωj .
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We conclude that
∆[G](w̃) = ξ ⇐⇒ ∆[F ](x̃) = ω,

and for n→ ∞

coeff
{
S(x)[F (x)]αnn,xξnαnn

}
=

S(x̃)√
(2παnn)ν |Γ[F ](x̃)|

[F (x̃)]αnn

x̃
ωnαnn (1 + o(1)).

lim
n→∞

coeff {F (x)αnn,xωnαnn} = α lnG(w̃)− α

ν∑

i=1

ξi ln w̃i

= α lnF (x̃)− α

ν∑

i=1

ξi ln x̃
b(i)

= α lnF (x̃)− α
ν∑

i=1

ξi ln




η∏

j=1

x̃
b
(i)
j

j




= α lnF (x̃)− α
ν∑

i=1

ξi

η∑

j=1

b
(i)
j ln x̃j

= α lnF (x̃)− α

η∑

j=1

ln(x̃j)

ν∑

i=1

ξib
i
j

= α lnF (x̃)− αω · ln x̃.
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